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ABSTRACT

The seismic response of embankment dams is critical for effective seismic design, yet probabilistic
seismic demand models (PSDMs) for these structures remain underexplored. This study develops
PSDMs to identify the optimal Intensity Measure (IM) for embankment dams by evaluating 14
different IMs. Two approaches are employed for PSDM development: one utilises empirical data
from earthquake records from instrumented embankment dams, while the other is based on
numerical simulations using a Finite Element Method model of dam subjected to ground
motion records from free-field and dam site stations. A novel fuzzy comprehensive IM
evaluation framework is proposed, and using this framework, it was found that Root Mean
Square Velocity (VRMS) from empirical PSDM and Peak Ground Velocity (PGV) from the
numerical analysis PSDM are the most optimal IMs. In contrast, Effective Design Acceleration is
least optimal IM across both approaches. The study then classifies dam damage into five states
using relative crest settlement ratio as the engineering demand parameter. Seismic fragility
analysis conducted through both PSDM approaches indicates that Peak Ground Acceleration, a
commonly used IM, significantly underestimates the probability of damage to embankment
dams, with maximum underestimations of 44% and 30% observed using the empirical and
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numerical PSDMs, respectively.

1. Introduction

Embankment dams are essential for water conservation,
domestic water supply, agricultural irrigation, and
industrial use (Beck, Claassen, and Hundt 2012; Busch
2021). Additionally, these structures produce hydroelec-
tric power, which lessens reliance on fossil fuels and
provides renewable energy (Schleiss 2018). Further-
more, by reducing storm surges and heavy rainfall,
these dams are essential for flood control (Chen et al.
2021). Their design and construction must carefully
consider environmental challenges like water level
changes and flooding risks (Adamo et al. 2020; Zheng
et al. 2023). A major safety risk is their susceptibility
to seismic activity, as earthquakes can threaten their
stability, potentially causing catastrophic flooding, loss
of life, and significant environmental and financial
damage (Gordan et al. 2021; Liu et al. 2015; L. M.
Zhang, Xu, and Jia 2009).

The seismic safety evaluation of embankment dams
has evolved significantly over the past decades, progres-
sing from simplified deterministic analyses to advanced
numerical and probabilistic frameworks. Early assess-
ment methods were largely empirical and relied on
expert judgment or damage observations from past

earthquakes (Xu and Pang 2024). However, limited
case data and high site-specific variability make their
use less frequent. Pseudo-static analysis, one of the
first systematic approaches, applies an equivalent hori-
zontal seismic coefficient but oversimplifies transient
effects, resulting in conservative safety factors (Akhlaghi
and Nikkar 2014; Seed 1965). The Newmark sliding-
block model (Newmark 1965) enhanced this framework
by estimating cumulative displacements once ground
accelerations exceed a threshold yield acceleration,
and it has been widely used for crest settlement esti-
mation (Regina et al. 2023). Nevertheless, assumptions
of rigid-block behaviour neglect distributed defor-
mations, cracking, and pore-pressure effects.

Advances in computational tools have established the
numerical modelling methods like finite-element
method (FEM) and finite-difference method (FDM) as
standards for seismic evaluation of dams (Regina et al.
2023; Xu and Pang 2024). These models capture dam-
foundation-reservoir interaction, nonlinear material
behaviour, pore-pressure buildup, and complex geome-
tries. Experimental methods, such as shaking-table and
centrifuge tests, field monitoring with piezometers and
weirs, and geotechnical investigations of liquefaction
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potential, complement numerical analyses, providing
comprehensive seismic safety assessments of embank-
ment dams (Xu and Pang 2024).

Probabilistic methods explicitly quantify uncertain-
ties in ground motion, material properties, and struc-
tural behaviour, vyielding risk-based rather than
deterministic outcomes. Recent studies have demon-
strated the importance of such probabilistic frameworks
in dam and geotechnical risk assessment, particularly
when integrating monitoring data or characterising geo-
logical and hazard-related uncertainties (Jiang et al.
2025; Peng et al. 2024; Qi et al. 2024). Performance-
based earthquake engineering (PBEE) represents a
widely adopted probabilistic framework that integrates
seismic hazard, structural response, and damage or loss
estimation to support risk-informed decisions (Huang
et al. 2009; Moehle and Deierlein 2004). Originally
developed for buildings and bridges, PBEE has been
extended to dam safety, where it links intensity
measures (IMs) to engineering demand parameters
(EDPs) through IM-EDP relationships and fragility
curves (Giusto 2025; Tartaglia, D’Aniello, and Land-
olfo 2022). Enhancing PBEE for dams requires
accounting for both human and economic conse-
quences of earthquake-induced damage (Zerbe and
Falit-Baiamonte 2001). The framework generally
involves site-specific hazard analysis, dam response
evaluation, estimation of damage probabilities, and
assessment of repair or loss consequences (Heresi
and Miranda 2023).

Probabilistic Seismic Demand Models (PSDMs)
statistically relate IMs to EDPs, forming the basis for
fragility analysis and enabling probabilistic estimation
of damage exceedance. Empirical PSDMs use earth-
quake case histories (Ghaemi and Konrad 2023; Vahe-
difard and Meehan 2011), while simulation-based
PSDMs rely on numerical models calibrated with
site data (Macedo 2015). Recent developments in
hybrid and machine-learning-based PSDMs have
enhanced computational efficiency and predictive
capability (Mohammad Amin Hariri-Ardebili, Chen,
and Mahdavi 2022; Salazar and Hariri-Ardebili 2022)
but remain exploratory. Existing PSDMs are often
developed for specific types of dams. To the author’s
knowledge, PSDMs directly derived from instrumen-
ted dam’s data have not been systematically devel-
oped, and no study has built PSDMs and fragility
curves in parallel using both empirical and numerical
data-based PSDMs for embankment dams. Compar-
able efforts have been made for levees; Kwak et al.
(2016) characterised the seismic fragility of levees
using field performance data, and Liu (2024) con-
ducted a system-level seismic risk assessment of

California’s levees, highlighting the potential for inte-
grated studies in embankment dams.

Within the PBEE framework, selecting an appropri-
ate IM is a crucial step, as the dispersion of EDPs and
the uncertainty of fragility functions are highly depen-
dent on the chosen IM (Huang et al. 2021). Traditional
PSDMs commonly rely on a single IM, generally Peak
Ground Acceleration (PGA). Recent studies have
explored alternative IMs that better represent ground
motion complexity and its influence on dam response
(Armstrong, Kishida, and Park 2020; Khalid et al.
2023; Regina et al. 2023). Arias Intensity (AI) has been
identified as a reliable predictor of deformation in
earth dams (Armstrong, Kishida, and Park 2020). Simi-
larly, Khalid et al. (2023) demonstrated that Effective
Design Acceleration (EDA), Sustained Maximum
Acceleration (SMA), Root Mean Square Acceleration
(ARMS), Peak Ground Velocity (PGV), and Character-
istic Intensity (IC) provide improved predictive per-
formance for concrete-faced rockfill dams. Regina et
al. (2023) further demonstrated that Cumulative Absol-
ute Velocity (CAV) is particularly effective in capturing
the nonlinear deformation behaviour of earthen dams
through FEM analyses. Hence, the optimal choice of
IM varies across different dam types, and most of the
existing IM evaluations are commonly based on simu-
lation-based PSDM. To the author’s knowledge, instru-
mented embankment dam seismic record data have not
yet been systematically used for either PSDM develop-
ment or IM evaluation, and no study has systematically
evaluated candidate IMs using both empirical and simu-
lation data within a unified framework, underscoring
the need for integrated research to reduce uncertainty
in PSDM predictions for embankment dams.

The present study evaluates a range of candidate IMs
that are critical for assessing the seismic vulnerability of
embankment dams. Fourteen IMs influencing dam
response are considered and grouped into frequency,
energy, and amplitude based IMs. Probabilistic Seismic
Demand Models (PSDMs) are developed using two
complementary approaches: the first employs empirical
data from earthquake records from instrumented
embankment dams, while the second relies on FEM
simulations of a homogeneous embankment dam sub-
jected to recorded ground motions. The empirical
PSDM yields IMs that are broadly applicable to different
types of embankment dams, whereas the numerical
PSDM provides optimal IMs applicable to homo-
geneous embankment dams. The performance of each
IM is assessed in terms of efficiency, practicality, and
proficiency. A structured fuzzy logic evaluation frame-
work is proposed to integrate these criteria and identify
the optimal IMs for assessing the seismic vulnerability



GEORISK: ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS . 3

of embankment dams. Finally, seismic fragility analyses
are conducted using both empirical and numerical
PSDMs to ensure a consistent and reliable evaluation
of dam performance.

The novelty of this work includes developing empiri-
cal and numerical data-based PSDM within a unified
framework to enhance the reliability of optimal IM
selection and vulnerability assessment of embankment
dams. The research advances existing studies by intro-
ducing a structured fuzzy logic-based evaluation frame-
work and, for the first time, proposing optimal IM
applicable to different types of instrumented embank-
ment dams and homogeneous embankment dams. Fur-
thermore, the study establishes seismic fragility curves
derived from both empirical and simulation-based
PSDMs, providing a comprehensive and consistent
basis for the seismic vulnerability assessment of
embankment dams.

2. Ground motion intensity measures

Amplitude, frequency content, and duration are among
the attributes of ground motion intensity measures
(IMs) that are essential for evaluating the performance
and safety of structures (Kramer and Stewart 2024;
Zhang et al. 2025). Selecting appropriate IMs is crucial
when developing IM-EDP relations for embankment
dams to accurately gauge seismic vulnerability. Common
IMs include peak ground acceleration (PGA), peak
ground velocity (PGV), and spectral acceleration (Sa) at
various periods. With the increasing availability of
recorded ground motion data, modern IMs have been
developed to capture additional aspects of seismic exci-
tation and improve correlations with EDPs. In this
study, fourteen representative IMs were derived from
earthquake acceleration time histories using Seismo-
Signal software (Seismosoft 2024). These IMs encompass
the three principal families widely recognised in earth-
quake engineering: amplitude-based (PGA, PGV, PGD,
SMA, SMV, EDA), frequency-based (ARMS, VRMS,
DRMS, PGV/PGA, PP, MP), and energy-based (Al
CAV). Together, these measures capture the primary fac-
tors that control the response of geotechnical systems
(Housner 1952; Arias 1970; USACE 2024). The selected
IMs are consistent with standard engineering practice
and follow FEMA and USACE guidelines, which rec-
ommend PGA, PGV, PGD, and spectrum-based
measures for assessing the effects of ground motion on
critical infrastructure (FEMA 2020; USACE 2007).
Some less-commonly used IMs, such as particular
definitions of significant duration and cumulative
squared acceleration (CSA), were not included in this
study. This choice preserves interpretability by limiting

IMs that convey very similar information. Duration-
related and cumulative effects are already represented
by AI, CAV, ARMS, and VRMS, while spectral and
period-based measures capture frequency content and
resonance potential. CSA is proportional to the time
integral of acceleration squared and is therefore closely
related to AL Studies have shown that AT and CSA are
strongly correlated and that CSA adds little extra predic-
tive value for most geotechnical applications (Arias
1970; Baltay, Hanks, and Abrahamson 2019; Bradley
2015). Table 1 summarises these IMs and their typical
use in dam and soil structure, while detailed definitions
are provided in Appendix A.

3. IM-EDP relationship

Evaluating structural performance under dynamic loads
requires an understanding of the relationship between
IMs and EDPs. IMs show the severity of ground motion,
whereas EDPs show structural responses (Rathje and He
2022). Evaluations of seismic risk are improved by a
strong IM-EDP correlation. Pinzén et al. (2023) demon-
strate that metrics like Sa at a building’s fundamental
period correlate with EDPs more closely than more tra-
ditional IMs like PGA, supporting the idea that struc-
tural dynamics should be added to IMs. To predict
seismic-induced deformations and maintain structural
integrity, IM-EDP relationships are essential for
embankment dams. The choice of IM has a major
impact on crest settlements and failure probabilities,
so specific IM-EDP relation models are required for
seismic evaluations (Rathje and He 2022). Accurate esti-
mates of earthquake-induced displacements require
detailed analyses, as probabilistic seismic hazard ana-
lyses (PSHA) often miss complex structural responses
(Ghahreman-Nejad and Kan 2017). Thus, specialised
analyses within the PBEE framework are vital for asses-
sing the seismic performance of embankment dams.

PSDMs are utilised to describe the seismic response
of structures by defining a probabilistic relation between
ground motion IMs and EDPs (Regina et al. 2023).
These models are founded on the assumptions that
EDPs are distributed lognormally; there exists a logar-
ithmic, linear relationship between EDP and IM, and
the logarithmic standard deviation of EDPs is constant
(Cornell et al. 2002). The relationship between EDPs
and IMs is expressed through a power function, as out-
lined in Equation (1):

EDP = a (IM)" (1)

where, a and b are regression coefficients derived from
regression analysis, while EDP is the engineering
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Table 1. Intensity measures considered in the current study, with their physical meaning and application in the context of the dam
and soil structure.

Category Intensity measure (IM) Notation Physical meaning Application (dam/soil structure)
Amplitude Peak Ground PGA' Maximum ground Common seismic hazard parameter; primary input for pseudo-static
Based Acceleration(g) acceleration stability checks and force-based analysis (Papadimitriou, Bouckovalas,
and Andrianopoulos 2014).
Peak Ground Velocity(m/ PGV’ Maximum ground Strongly correlates with liquefaction triggering and velocity-dependent
s) velocity embankment deformations and displacements (USACE 2024).
Peak Ground PGD' Maximum ground Assesses long-period demands. Indicates residual settlement and
Displacement(m) displacement permanent slope movement (Kramer and Stewart 2024).
Sustained Maximum SMA? Third-largest cyclic Highlights prolonged cyclic accelerations affecting the crest. Represents
Acceleration(g) acceleration peak sustained shaking that increases cyclic degradation (Yakut and Yilmaz
2008).
Sustained Maximum SMV? Third-largest cyclic Evaluates velocity-sensitive deformation. Captures velocity pulses driving
Velocity(m/s) velocity peak cumulative displacement (Yakut and Yilmaz 2008).
Root-mean-square of ARMS* Root-mean-square Represents average shaking intensity; used in random vibration theory
Acceleration(g) acceleration for demand estimation.
Root-mean-square of VRMS* Root-mean-square Assesses long-period energy for embankment response. Supports
Velocity (m/s) velocity displacement/liquefaction correlations.
Root-mean-square of DRMS* Root-mean-square Indicates low-frequency and long-wave energy content; relevant for
Displacement(m) displacement large structures.
Effective Design EDAS PGA filtered above ~8- Filters irrelevant high-frequency content for demand estimation.
Acceleration(g) 9 Hz Prevents overestimation from instrument noise (Kennedy et al. 1980).
Frequency The ratio of PGV to PGA  PGV| Proxy for characteristic Distinguishes between short-period and long-period motions and is a
Based (s) PGA’ period (~T/2m) key spectral shape parameter (Rathje, Abrahamson, and Bray 1998).
Predominant Period (s) pp’ Period of maximum Identifies dominant motion frequency; critical for resonance studies with
spectral acceleration the structure’s natural period.
Mean Period (s) mp3 Fourier amplitude- Simplified descriptor of spectral shape and can be used for site
weighted mean period classification (Rathje, Abrahamson, and Bray 1998).
Energy Based Arias Intensity(m/s) AP Cumulative squared Measures shaking “energy”; highly effective in predicting cracking, slope
acceleration content sliding, and liquefaction potential in earth structures (Reed and
Kassawara 1990).
Cumulative Absolute CAV' Time integral of absolute  Used as a cumulative damage index in dam safety assessments for

Velocity(m/s)

acceleration

distinguishing damaging vs. non-damaging motions (Reed and

Kassawara 1990).

"Kramer and Stewart (2024); “Nuttli (1979); *Rathje, Abrahamson, and Bray (1998); “Housner and Jennings (1964); >Arias (1970); ®Benjamin (1988).

demand parameter. The assumption of a power func-
tion relationship, as described above, has been widely
applied in the fragility analysis of various structural sys-
tems. Additionally, Equation (1) can be reformulated
into the form of a logarithmic normal linear regression
model, provided that the seismic demand follows a log-
normal distribution (Dhiman et al. 2024; Lee et al.
2019), as illustrated in Equation (2):

In (EDP) = In(a) + b-1In(IM) (2)

where a and b represent the antilogarithm and slope of
the perpendicular offset in the PSDM relationship. The
following two primary methodologies can establish the
relationship between the IM and the EDP using PSDM:

3.1. Method 1: empirical analysis (using
earthquake records from instrumented dams)

An empirical PSDM is constructed using observed data
rather than numerical simulations. This data can come
from post-earthquake damage surveys that analyze
how structures performed during past earthquakes
(Khanmohammadi et al. 2023; Lozano and Tien 2023;
Luli¢ et al. 2021), experimental testing through shake
table experiments to observe structural responses (Cui

2023; Hu et al. 2021), and instrumented structures
(e.g. buildings and dams) collecting real-time data
from structures equipped with sensors during seismic
events (Adamo et al. 2020; Clarkson, Williams, and Sep-
péld 2020; S. Wang et al. 2024).

Empirical studies have demonstrated a strong corre-
lation between accumulated vertical displacement, par-
ticularly the maximum observed vertical displacement
at a dam’s crest following seismic events, and IM
metrics such as PGA and Sa. For example, Nardo,
Biondi, and Cascone (2024) investigated the San Pietro
Dam and identified relationships between crest vertical
displacements and seismic parameters, ultimately devel-
oping empirical equations for predicting crest settle-
ment. Similarly, De La Paz-Bonilla and Vidot-Vega
(2017) concentrated on crest settlements at the Carite
Dam, relating them to Sa.

We developed the empirical PSDM using earthquake
records from instrumented embankment dams. Accel-
eration records from instrumented dam crests were pro-
cessed using SeismoSignal (Seismosoft 2024) through a
two-stage digital signal processing workflow as dis-
cussed by Boore and Bommer (2004). From the displa-
cement time histories produced, peak and cumulative
vertical crest displacements were extracted for



GEORISK: ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS . 5

performance-based seismic assessment (Han et al. 2019;
Priestley and Kowalsky 2000). The seismic performance
of the embankment dam was assessed using the relative
crest settlement ratio (RS) as the EDP. Few studies have
shown a significant correlation between the damage
state of an earth dam and the RS (Fell et al. 2005; Swais-
good 2003). RS is defined as the ratio of the settlement of
the dam crest to its total height, expressed as a percen-
tage (He and Rathje 2024):

RS (%) = Cre?t Settlement % 100 3)

Height of Dam

where the dam crest settlement is the displacement of
the dam crest in the vertical direction, and the dam
height is the original height of the dam before any
deformation. For this method, the crest settlement is
taken as the accumulated vertical displacement. A
total of 11 instrumented embankment dams were
affected by 20 earthquake events, sourced from litera-
ture and the COSMOS Strong Motion Data Centre,
which were considered for this method and listed in
Table 2. Only records with acceleration time histories
from the dam toe/downstream/base and crest were
selected. In the following texts, this method will be
termed as M;.

3.2. Method 2: numerical simulations (FEM
modelling of dam)

For this method, we utilised a sample embankment dam
described by Guo, Dias, and Pan (2019), as illustrated in
Figure 1(a). This dam has a height of 16 metres, with
both the upstream and downstream slopes designed at
a ratio of 1:2.6. Table 3 summarises the characteristics
of the dam body and foundation materials, as detailed
by Guo, Dias, and Pan (2019). These properties include
unit weight, effective cohesion, effective friction angle,
young’s modulus, and poisson’s ratio.

A 2D FEM model of the embankment dam was cre-
ated using the QUAKE W module of GeoStudio soft-
ware (GEO-SLOPE International Ltd. 2024). Dynamic
analyses utilised QUAKE W’s nonlinear capabilities
under 2D plain-strain conditions. The model consists
of two main elements: the dam body and foundational
bedrock, as shown in Figure 1(b). The FEM model
was developed based on material properties listed in
Table 3, with additional assumptions. To ensure a bal-
ance between accuracy and computational efficiency,
the mesh size was selected to not exceed 1/10 to 1/8 of
the wavelength for the highest excitation frequency
(Lysmer and Kuhlemeyer 1969); resulting in mesh
sizes ranging from 0.5 m to 2 m, we have used a mesh

size of 2 m as shown in Figure 1(b). The dam and its
foundation do not vibrate independently under external
excitation; instead, they behave as a coupled system
(Burman et al. 2011). Therefore, the interaction between
the dam and the foundation was considered by model-
ling the embankment and foundation together as
deformable continua within the QUAKE W nonlinear
dynamic framework (GEO-SLOPE International Ltd.
2024). These zones were meshed as a bonded conti-
nuum so that stress transfer and deformation compat-
ibility across the dam-foundation interface were
captured directly by the FEM formulation (Chakraborty
and Dey 2024; Guo, Dias, and Pan 2019; He and Rathje
2024; Khalilzad, Gabr, and Hynes 2015).

Each simulation was conducted in two distinct
phases. In the initial static phase, the boundary con-
strains the horizontal displacements of the foundation’s
side face and horizontal and vertical movements at the
base. The FEM dam model was then geostatically
balanced before dynamic loading. Gravity loading was
applied and iterated to equilibrium, and the resulting
in-situ stress and pore-water pressure fields were then
used to initialise the subsequent nonlinear dynamic
analysis, ensuring geostatic stress balance and eliminat-
ing any spurious initial displacements before dynamic
loading. Residual nodal displacements and unbalanced
forces were checked and found to be negligible, allowing
for a start to the dynamic analysis from a physically
equilibrated state. In the subsequent dynamic phase,
the vertical displacements of the foundation’s side face
and horizontal and vertical movements at the base are
restricted, and the coupled response of the dam and
foundation under seismic loading is computed. This
procedure follows the recommendations of the
QUAKE W guidelines (GEO-SLOPE International Ltd
2024) and aligns with recent applications of GeoStudio
in seismic slope and dam stability analyses (Chakraborty
and Dey 2024; Honggiang et al. 2025).

Using a linear elastic model could result in calculated
stresses in some places that are higher than the strength
of the soil, which is not realistic considering the charac-
teristics of the soil, especially during intense seismic
activity. For the soil to accurately assess the stress and
deformation characteristics, a nonlinear constitutive
model must be implemented, guaranteeing that the
computed stresses stay within the limits of the soil’s
strength. To effectively capture the nonlinear response
of the dam during seismic events, this study utilised
dynamic effective stress analysis. The hyperbolic back-
bone curve, which adheres to the Masing rule (Kramer
and Stewart 2024), was employed to represent the non-
linear stress-strain relationships of the dam materials
(Hu et al. 2023). This curve is defined by two key
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Table 2. Summary of crest displacement and earthquakes recorded on the dam used in method 1 (M;).

Epicentre

[ it Tectonic
Dam Hp (m) Earthquake Date Lat (°) Long (°) Fault Type Setting D¢ (km) M,, Ry, (km) S (cm) PGA (g)
Anderson 72 Alum rock 2017/10 /10 37.43 —122  Right lateral strike-slip Interplate 9.2 4.1 16.8  0.006 0.004
Loma Prieta 1989/10/18 37.04 —122  Oblique slip reverse Interplate 18 6.9 27 159  0.135
Morgan Hills 1984/04/24 3731 —122  Right lateral strike-slip Interplate 8 6.2 48 4070 0423
Carbon Canyon 30  Northridge 1994/01/17 3421 —119  Blind thrust Intraplate  17.5 6.7 67 54.16  0.195
Whittier Narrows 1987/10/1 34.05 —118  Thrust Intraplate 146 5.9 247 2367 0319
Cayote 50 Redwood Valley 2017/10/13 39.2 —123.2 Right lateral strike-slip Interplate 4 4.2 108 0.128 0.037
Del Velle 70  Loma Prieta 1989/10/18 37.04 —122  Oblique slip reverse Interplate 18 6.9 66 2486 0.055
Long Valley 384 Chalfant Valley  1986/07/21 37.58 —118  Right lateral strike-slip Interplate 19 6.4 26.7 8256 0.096
Toms Place 2020/02/1 37.53 —119  Oblique-slip (transtensional) Interplate 10 44 - 0.032 0.05
Martis Creek 344 Mohawk valley 2001/08/10 39.8 —120  Right lateral strike-slip Interplate 14 54 72 0.013  0.023
Pacoima 113 Chino hills 2008/07/29 3396 —118  Oblique slip Interplate 146 5.4 - 0.006  0.006
Newhall 2011/08/01 3437 —119  Reverse Intraplate 7.2 4.2 - 0.001  0.005
San Antonio 49  Lake Nacimiento 2009/06/20 39 —123  Oblique-slip thrust Intraplate 6.1 46 - 0.004 0.023
Newidria 2012/09/20 36.4 —120.7 Blind thrust Interplate 9.4 53 0.043 0.03
Parkfield 2005/06/16 359 —120  Right lateral strike-slip Interplate 89 34 - 0.004 0.028
San Simeon 2003/12/22 3571 —121 Blind thrust Interplate 7.1 6.5 - 1378 0.116
Tolt River 61 Duval 1996/05/03  47.77 —122  Strike-slip Intraplate 7 5.1 148 1.663 0.183
Nisqually 2001/02/28 47.18 —122.9 Normal Intraplate 52 68 111 1.092 0.133
Terminus 78  Ridgecrest 2019/07/06  35.76 —118  Strike-slip Interplate 7 7.1 - 1.049 0.016
Prado 49  Northridge 1994/01/17 342 —119  Blind thrust Intraplate  17.5 6.7 85.4 191 0.193

Abbreviations: Lat: Latitude, long: Longitude, Hp: Height of dam, M,,: Moment magnitude, Ry,,,: Hypocentral Distance, Dy. Fault Depth, S: Accumulated vertical

displacement, PGA: Peak Ground Acceleration.

parameters: the slope at zero strain, known as the initial
small-strain shear modulus (G,,y), and the asymptotes
at large strains (shear strength).

The soil properties within the hyperbolic model are
relatively straightforward, requiring values for G,.x
along with the Mohr-Coulomb strength parameters
(cohesion, ¢, and angle of internal friction, ¢). The
initial G, is determined based on effective overburden
stress in QUAKE W. In this effective stress nonlinear
model, the damping characteristics of the dam par-
ameters are linked to Gp,.x as discussed by Ishibashi

Upstream

and Zhang (1993) as given in Equation (4).

)

Dinax is a user-defined value of maximum damping set
in this study at 0.35, while Gy,.x denotes the initial
small-strain shear modulus. This modulus is derived
from the chosen material property function and the
initial static effective overburden stress. At the outset
of the analysis, G is initialised to G,y and D is the

G

Gmux (4)

D= Dmux<1 -

Downstream
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Figure 1. Geometry for finite element modelling of the embankment dam: (a) Embankment dam geometry with different materials
represented by distinct colours (adapted from Guo, Dias, and Pan 2019); (b) Schematic view of the model geometry and the corre-

sponding finite element mesh employed in the present study.
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Table 3. Soil parameters for the studied embankment dam
(After Guo, Dias, and Pan 2019).

Parameters Dam body (backfill) Foundation
Effective cohesion (kPa) 8.9 100
Effective friction angle (°) 34.8 34.1
Unit weight (kN/m’) 20 18
Young modulus (MPa) 100 600
Poisson’s ratio (1) 0.3 0.25

damping assigned a minimum value of 0.05 for this
study. During the dynamic phase, the shear modulus,
referred to as G, is modelled according to the shear
modulus degradation function developed by Ishibashi
and Zhang (1993) in QUAKE W.

A comprehensive series of nonlinear dynamic ana-
lyses was performed. Acceleration records from various

motion for the model was derived from an earthquake
database, specifically selecting records with a PGA >
0.05 g. The magnitudes of the earthquakes chosen var-
ied from moment magnitude (M,,) of 5.1 to 7.6, ensur-
ing the inclusion of a range of fault mechanisms and
tectonic settings to address all potential types of earth-
quake sources. Horizontal ground motions were applied
at the base of the model, utilising a total of thirty free-
field earthquake records from seven distinct earthquakes,
along with nine records from eight stations situated on
the embankment dam sites. A summary of the input
motions used is presented in Table 4, and Figure 2 pre-
sents the response spectrum of all input ground motions.
Throughout the analyses, vertical displacement was cal-
culated, with results documented for key nodes located

at the dam’s crest. The seismic response was evaluated
based on the maximum vertical displacement recorded
at the crest. Figure 3 illustrates an example of the vertical

earthquakes were collected from multiple stations; how-
ever, due to a lack of detailed information regarding the
seismic hazard analysis of the dam site, the input

Table 4. Earthquake records used in Method 2 (M,) for FEM modelling.

Station location Earthquake Date Fault type Tectonic setting D¢ (km) My, No of records
Free Field Chichi 1999/09/20 Thrust Interplate 8 7.7 15
Kobe 1995/01/16 Right lateral strike-slip Intraplate 17.6 7.3 7
Imperial Valley 1979/10/15 Right lateral strike-slip Interplate 10 6.4 1
Kozani-Grevena 1995/05/15 Normal Intraplate 14 6.6 2
Loma Prieta 1989/10/17 Oblique slip reverse Interplate 18 6.9 2
Manjil-Rudbar 1990/06/20 Left lateral strike slip Intraplate 15 74 1
Westmorland 1981/04/26 Strike-slip Interplate 10 5.9 2
Anderson Dam Morgan Hills 1984/04/24 Right lateral strike-slip Interplate 8 6.2 1
Loma Prieta 1989/10/18 Oblique slip reverse Interplate 18 6.9 1
Carbon Canyon Dam Whittier Narrows 1987/10/1 Thrust Intraplate 14.6 5.9 1
Long Valley Dam Chalfant Valley 1986/07/21 Right lateral strike-slip Interplate 19 6.4 1
Parado Dam Northridge 1994/01/17 Blind thrust fault Intraplate 17.5 6.7 1
Seven Oaks Dam SanBrendo 2009/01/08 Right lateral strike-slip Interplate 13.8 45 1
San Antonio Dam San Simeon 2003/12/22 Blind Thrust fault Interplate 7.1 6.5 1
Sant Felica Dam Northridge 1994/01/17 Blind thrust fault Intraplate 17.5 6.7 1
Tolt River Dam Duval 1996/05/03 Strike-slip faulting Intraplate 7 5.1 1

Abbreviations: M,,: Moment Magnitude, Ds: Fault Depth.

2r Response spectrum )
1.8+ —Mean response spectrum |

’ ---Mean response spectrum =+ standard deviation
1.6 b
l4r b
1.2 i

Response Acceleration (g)

Period (s)

Figure 2. Response acceleration of all considered input ground motions, where the red line denotes the mean response acceleration.
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Figure 3. Example of a vertical displacement contour obtained from finite element (FEM) modelling. The contour illustrates the
distribution of vertical settlements across the embankment and foundation.

displacement contour obtained from FEM modelling.
For this method also, RS is calculated using the Equation
(3), but in this method, the crest settlement is taken as the
vertical displacement of the dam crest computed from
the FEM analysis. Following this, the IM-EDP relation
is developed using PSDMs. Method 2 will be referred
to as M, in the following text.

3.2.1. Validation of the numerical model

The numerical model is based on geometry and material
properties of a real-world dam project as discussed by
Guo, Dias, and Pan (2019), post-earthquake settlement
data for the reference dam were not available, making
direct empirical calibration infeasible, so the FEM
model was validated against 19 documented case his-
tories of medium-sized embankment dams subjected
to similar PGA levels as reported by Swaisgood
(2003). Figure 4 illustrates that the model accurately

reproduces the observed trend of increasing crest settle-
ment with increasing PGA. Agreement with case his-
tories was quantified using RMSE and mean bias
(RMSE =0.051 m, bias=—0.012m), indicating that
the model reproduces observed behaviour with reason-
able accuracy. This suggests that FEM results are con-
sistent with observed performance trends, supporting
the credibility of the PSDM and fragility curves.

4, Evaluation parameters

This section provides an overview of the evaluation of
IMs, emphasising their effectiveness in predicting EDP.
With 14 IMs under consideration, the analysis aims to
identify the most appropriate IM for EDP prediction
for embankment dams, considering the M; and M,
based PSDMs. To determine the optimal IM for embank-
ment dams, five steps are taken: (1) 21 earthquake

0-2 1 1 1 1 1 1 1 1 1 1 1
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1| Elmer J. Chesbro - Uvas * Almaden « Calero a
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* YucaipaNo. I YucaipaNo.2  « Upper Lake Mary * Lower Franklin
’g 0.15 4 | Guadalupe * Los Angeles * North Dike LA - Santa Felicia F
5 0.1251 s
: i
=
o 0.17 F
wn =t o
‘&; L]
8 0.075 o .
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o
m o ¥
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Figure 4. Comparison of crest settlement from the current study with case studies of embankment dams having medium height and

subjected to comparable PGA levels as listed by Swaisgood (2003).
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records from 11 instrumented embankment dams are
selected for empirical analysis (Section 3.1), along with
39 ground motions for numerical simulation (Section
3.2); (2) the acceleration records of these instrumented
dams are utilised to assess the accumulated vertical dis-
placement (Section 3.1), and the selected ground motions
are input into the developed numerical model to conduct
dynamic analysis (Section 3.2); (3) 14 IMs extracted from
Step (1) and EDPs obtained from Step (2) are employed
for empirical and numerical simulation approaches,
respectively, to establish empirical data-based and
numerical simulation data-based PSDMs (Section 3);
(4) three commonly used metrics for IM evaluation are
applied, calculating coefficients for each metric based
on both PSDMs: efficiency (Ciampoli and Giovenale
2004), which quantifies the uncertainty of PSDMs

(Section 4.1); practicability (Mackie and Stojadinovi¢
2001), which reflects the correlation between IMs and
EDPs (Section 4.2); and proficiency (Padgett, Nielson,
and DesRoches 2007), which addresses the trade-off
between efficiency and practicality (Section 4.3); (5)
finally, the coefficients are utilised in the fuzzy compre-
hensive evaluation method detailed in Section 5 to quan-
titatively select the optimal IM. The general proposed
procedure for optimal IM selection is summarised in
Figure 5.

4.1. Efficiency

Efficiency refers to an IM’s capacity to predict the corre-
sponding EDP consistently with minimal variability
(Ciampoli and Giovenale 2004). In the context of
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Figure 5. Schematic representation of the proposed framework for evaluating optimal intensity measures (IMs) for embankment

dams.
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seismic performance assessment, an efficient IM
demonstrates a robust and stable correlation with the
EDP across diverse ground motions, thereby minimis-
ing uncertainty in predicting structural responses. Typi-
cally, efficiency is assessed using statistical indicators
such as the standard deviation of residuals (ogppjn),
the coefficient of determination (R?), root mean square
error (RMSE), and the correlation coefficient (r).

4.1.1. Correlation coefficients

Pearson correlation coefficients, as discussed by Pinzén
et al. (2023), were used here to assess the correlation
between the IMs and EDPs. The Pearson coefficient
measures the linear relationship between two variables.
The Pearson correlation coefficient “r” is defined as the
covariance of the two variables divided by the product of
their standard deviations ¢ and is given by Equation (5).

Cov(In (x;), In (y))
r=
Oln (X]) Oln (}’)

(5)

where In (x;) and In (y) are the natural logarithms of the
IM and EDP values, respectively. The term Cov (In (x;),
In (y)) represents the covariance between the two logar-
ithmic variables, while oy, () and oy, (y) are their corre-
sponding standard deviations. A correlation coefficient
value close to 1 indicates a strong positive correlation,

while a value nearing —1 signifies a strong negative cor-
relation. A coefficient of zero implies no correlation at
all.

Figure 6(a) shows that in the Pearson correlation
model, PGV, VRMS, Al, CAV, and SMV demonstrate
the strongest correlation with the EDP in M; and M,.
As a result, PGV, VRMS, AI, CAV, and SMV are the
IMs having the best correlation with EDP.

4.1.2. Goodness of fit

The goodness of fit is a widely recognised and effective
metric for evaluating data fitting. The linear regression
coefficient (R?) serves as the primary measure of good-
ness of fit, indicating the extent of deviation between the
observed data and the fitted regression line. These
regression coeflicient values range from 0 to 1, with
values closer to 1 reflecting a more accurate represen-
tation of the data trend and reduced scatter.

A goodness-of-fit value approaching one indicates a
stronger correlation between the IM and the EDP. As
illustrated in Figure 6(b), the PGV achieved the highest
R? values of 0.90 for M; and M,. This was followed by
the SMV and the VRMS, which recorded R? values of
0.90 and 0.89 and 0.94 and 0.72 for M; and M, respect-
ively. The AI also performed well, with R values of 0.86
and 0.81 for M; and M,. Additionally, the CAV
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Figure 6. Comparison of: (a) correlation coefficients (r); (b) coefficients of determination (R?); (c) root-mean-square errors (RMSE); and
(d) dispersion (ogppim) for each Intensity Measure (IM) obtained using Method 1 (M;) and Method 2 (M,).
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demonstrated strong performance with R? values of 0.85
and 0.81 for M; and M,, respectively. In contrast, PGA,
PP, MP, EDA, and PGV|PGA exhibited relatively lower
R? values. Hence, the PGV, SMV, VRMS, Al, and CAV
are better IMs than the others in terms of goodness of
fit.

4.1.3. Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is a key metric used to
evaluate the predictive capability of IMs in estimating
the corresponding EDPs. It measures the average mag-
nitude of the prediction error, providing a direct assess-
ment of how closely the predicted EDP values (obtained
through regression analysis) from PSDMs obtained
from M; and M, match the actual observed values.
RMSE is calculated using Equation (6).

_ 1IN~ sy
RMSE = n;(y, 7)) (6)

where y; is the observed EDP value, ; is the predicted
EDP value from the model, and n is the number of data
points. A lower RMSE implies a more accurate and
reliable IM, suggesting smaller deviations between
observed and predicted EDPs. From Figure 6(c), we
can see that VRMS has the lowest RMSE (0.73), fol-
lowed by PGV|PGA (0.97), and SMV (1), while PGA
has the highest RMSE (1.32) from M;. Similarly, AI
has the lowest RMSE (0.012), followed by PGV (0.016)
and SMA (0.016), while DRMS has the highest RMSE
(0.029) from M,.

4.1.4. Standard deviation of residuals (dispersion)
An efficient IM reduces the variation and dispersion of
seismic demand predictions for a given ground motion
(Ciampoli and Giovenale 2004). M; and M, PSDMs are
employed to evaluate IM efficiency through the stan-
dard deviation (ogppjim), expressed in Equation (7).

\/Z (ln EDPactual —1In EDPpredicted)2 (7)

OEDP|IM = N_2

where N is the total number of observations for a par-
ticular category of orppiiv, EDPacyal is the actual value
of EDP from the dataset, and EDPpredicted is the value
obtained from the fitted curve after putting in the IM
value. Efficiency is inversely related to the standard
deviation (ogppjim),a lower efficiency corresponds to a
higher standard deviation. The dispersion of various
IMs is calculated using Equation (7). A lower value of
ogppjiv indicates a more effective IM, whereas higher
values signify reduced efficiency.

As shown in Figure 6(d), PGV has the lowest dis-
persion, with ogppm values of 1.39 and 0.49 for M,

and M,, respectively. Following PGV, SMV (0gppjim =
1.43 and 0.51 from M; and M, respectively), VRMS
(oeppjm = 1.07 and 0.80 from M, and M, respectively).
AI ( ogppym = 1.8 and 0.53 from M, and M,) and CAV
( ogppaM = 1.67 and 0.65 from M; and M, respectively)
exhibit notable lower dispersion. In contrast, the highest
oeppjim is observed for the PP (ogppiv = 3.28 and 1.23
from M, and M,), indicating that this IM has the highest
dispersion. This is followed by EDA (ogppjim = 2.43 and
1.47 from M; and M,), PGV|PGA (ogppm = 3.01 and
1.09 from M; and M,), and MP (ogpppm = 3.1 and
1.07 from M; and M,).

In summary, the optimal ranking of IMs for
efficiency, based on r, RMSE, R? and OEpp|M COnsist-
ently identifies PGV, SMV, VRMS, CAV, and Al as
the most efficient choices for embankment dams.

4.2. Practicality

The practicality criterion directly links the IM and the
resulting EDP. When deemed impractical, the EDP
shows little to no relationship with the seismic IM mag-
nitude. An IM-EDP relationship is seen as practical if it
can be easily constructed from available ground motion
IM and nonlinear analysis response values and if it
makes sense from an engineering perspective (Ciampoli
and Giovenale 2004; Mackie and Stojadinovi¢ 2001).

The practicality of an IM is assessed using the coeffi-
cient (b), which represents the slope of the regression
line, as illustrated in Equation (2). A lower (b) value
indicates that the IM has a minimal impact on seismic
demand estimation, suggesting impracticality. In con-
trast, a higher (b) value signifies a more practical IM.
Figure 7(a) demonstrates the practicality of various
IMs. SMA measure achieved the highest (b) values of
2.47 and 1.9 for M, and M,, respectively, establishing
it as the most practical IM. Additionally, PGA and
PGV|PGA showed significant practicality, with (b)
values of 2.57 and 1.84 and 5 and 1.5 for M; and M,,
respectively. CAV (2.30 and 1.33 from M; and M,),
PGV (2.5 and 1.29), and SMV (2.15 and 1.32) also
demonstrated considerable practicality. In contrast,
DRMS exhibited the lowest coefficient (b) values of
1.11 and 0.31 for M; and M,, indicating impracticality.
Other IMs with lower practicality include PGD, which
had (b) values of 1.26 and 0.46 from M; and M,.

4.3. Proficiency

Proficiency is a criterion that benefits from the simul-
taneous consideration of efficiency and practicality
(Ciampoli and Giovenale 2004; Padgett, Nielson, and
DesRoches 2007). A more proficient IM exhibits
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Figure 7. Comparison of: (a) b values for each Intensity Measure (IM) under the practicality criterion; (b) § values for each Intensity
Measure (IM) under the proficiency criterion, obtained using Method 1 (M;) and Method 2 (M,).

reduced, modified dispersion, which underscores the
extent of demand uncertainty linked to the choice of
IM. Modified dispersion (§), derived from Equation
(8), defines proficiency.

OEDP|IM

A low value of & signifies a more effective IM. The profi-
ciencies of the IMs, reflected in lower & values, are illus-
trated in Figure 7(b). Upon examining the IMs for &, it is
evident that PGV exhibits the lowest value among the
other IMs, with € values of 0.56 and 0.38 for M; and
M,, respectively. Other IMs with notably low modified
dispersion values include SMV (£ =0.66 and 0.38 from
M, and M,), CAV (£=0.72 and 0.49 from M,; and
M,), and VRMS (£ =0.53 and 0.70 from M; and M,).
Furthermore, the analysis reveals that DRMS has the
highest modified dispersion (§=1.48 and 4.49 from
M, and M,), followed by EDA (§ =0.94 and 6.74 from
M, and M,) and PGD (£=0.75 and 2.87 from M, and
M,). Based on the findings regarding optimal IM selec-
tion criteria, it is highlighted that PGV, SMV, VRMS,

CAV, and SMA have the highest proficiency. In con-
trast, PGA, PGV|PGA, ARMS, Al and PGD moderately
correlate with the EDP. Conversely, DRMS, EDA, PP,
and PGV|PGA demonstrate the least proficiency.

Based on the three evaluation parameters leading to
six evaluation metrics as discussed above, the top five
IMs from M; are presented in Table 5, while those
from M, are shown in Table 6. The data clearly shows
notable differences in IM rankings across the six evalu-
ation metrics. From Table 5, it is evident that VRMS,

Table 5. Ranking of intensity measures (IMs) according to
evaluation parameters for Method 1 (M;) (Common IM given
in bold).

Evaluation Rank
parameters Metrics 1 2 3 4 5
Efficiency r SMV PGV VRMS CAV Al
R? PGD DRMS VRMS PGV SMV
RMSE  VRMS PGV| SMV PP PGV
PGA

TEDP|IM PGD DRMS VRMS PGV SMV
Practicality MP PP EDA PGA PGV
Proficiency 13 MpP VRMS PGV PP SMvV
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Table 6. Ranking of intensity measures (IMs) according to
evaluation parameters for Method 2 (M,) (Common IM given
in bold).

Rank

Evaluation parameters  Metrics 1 2 3 4 5
Efficiency r PGV SMV Al CAV VRMS
R? PGV SMV Al CAV  VRMS

RMSE Al PGV SMA  CAV SMV
TEDP|IM PGV SMV Al CAV VRMS

Practicality b SMA PGA ARMS MP CAV

Proficiency & PGV SMV SMA  ARMS CAV

PGV, and SMV occurred in the top five IMs in efficiency
evaluation metrics, but the rank of these IMs is not con-
sistent across metrics (r, RMSE, R?, and OgppiMm). Fur-
thermore, in practicality evaluation (b), only PGV
occurs in the top five, whereas in proficiency evaluation
(§), VRMS, PGV, and SMV are again occurring, but
their order is not consistent. Similarly, Table 6 shows
that PGV, SMV, AI, CAV, and VRMS are the IMs
that occur in the top five IMs in efficiency evaluations
(r, RMSE, R? and oeppiiv) but the ranking of these
IMs is not consistent in the practicality (b) and profi-
ciency evaluations (§). Notably, a specific IM did not
achieve a consistent ranking across all parameters, high-
lighting the necessity of establishing a methodology that
can quantitatively integrate and standardise IM per-
formance across different criteria. As a result, we
devised a fuzzy comprehensive evaluation framework
aimed at quantitatively identifying the optimal IMs,
enabling a detailed exploration of the seismic fragility
of embankment dams.

5. Proposed fuzzy evaluation framework for
ranking intensity measures

The fuzzy comprehensive evaluation method, based
on the theory of fuzzy relation synthesis, converts
qualitative factors into quantitative metrics for a
thorough evaluation. This technique has been widely
utilised in both risk assessment and decision-making
procedures (Tang et al. 2022; Wang, Shafieezadeh,
and Ye 2017; Zhang et al. 2024). We use the fuzzy
comprehensive evaluation approach to quantitatively
consolidate and balance the performance of IMs
across different criteria, allowing for the identification
of the most appropriate IM for Embankment Dams.
The methodology comprises a combination of per-
formance metric calculations (described in Section 4)
and fuzzy logic-based aggregation to produce a single
score that indicates the overall effectiveness of each
IM. The comprehensive evaluation process applied
in this method is illustrated in Figure 8. The

procedure for identifying the optimal IM using the
fuzzy comprehensive evaluation technique includes:

Step 1: Construction of Factor set and Evaluation
set

In the initial phase of evaluating IMs, it is essential to
identify and define the relevant evaluation criteria, col-
lectively referred to as the factor set. This factor set
encompasses all the attributes that contribute to the
overall assessment of IM performance (Tan, Lu, and
Zhang 2016; Xin et al. 2021). Formally, the factor set
is represented as:

U=[U, Uy, ..., Uyl 9)

where U, denotes the i evaluation factor and m is the
total number of factors considered. For improved inter-
pretability and structured evaluation, the factors are
organised hierarchically into two levels:

(1) The primary factor set U;, which contains high-
level qualitative criteria capturing the key dimen-
sions of IM performance, is expressed as:

Uy = [Un, U, Usl

10
= [Efficiency, Proficiency, Practicality] )

(2) The secondary factor set U,, which consists of cor-
responding quantitative metrics that characterise
each primary criterion more precisely derived and
discussed in section 4 and is shown in Equation

(11).

Uy, = [Us1, Una, Uz, Usg, Uss, Ung]

11
R*, RMSE, r, & ] (1)

= [O'EDP\IM >

The evaluation set, V, reflects the outcomes consider-
ing the advantages and disadvantages of each evaluation
factor:

V == [Vl, V2a ) Vm] (12)

where V; represents a potential comprehensive evalu-
ation outcome. As this study only requires calculating
the relative rankings among IMs and not classifying
them into distinct levels, the evaluation set is replaced
by the rankings among IMs.

Step 2: Construction of the Fuzzy Relation Matrix

To quantitatively express the degree to which each
IM satisfies the evaluation criteria, a fuzzy relation
matrix is constructed. Each element r;; of this matrix
represents the normalised membership degree of the
™ IM concerning the ith evaluation factor. Normalisa-
tion is achieved using the sum-normalisation method
(Tang et al. 2022) in which each raw factor value x; is
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Figure 8. Flowchart of the proposed fuzzy evaluation method for ranking Intensity Measures (IMs).

divided by the total of that factor across all IMs:
Xij

ri =
Zj:l Xij

Where x;; is the raw value of the i'" evaluation factor for the
jth IM, m is the number of factors, and n is the number of
IMs. For factors where, lower values indicate better per-
formance (inverse relationship), such as ogppjm, RMSE,
and § the membership degree is transformed using
Equation (14) to its complement to maintain a consistent
membership scale where higher values indicate better per-
formance, for inverse factors i € {oEppjm, RMSE, &}.

s i=1L..,m5j=1...,n (13)

Xii
r, =1 — n]

J Zj:l Xij

,i=1,...,m;j=1,...,n

(14)

where x; is the member that requires processing by the
complement operation method. This formulation ensures
that the normalised values for each metric sum to unity,

preserves relative magnitudes, and yields values bounded
by [0, 1] when x;; > 0 for ith evaluation factor (Hwang and
Yoon 1981; Tang et al. 2022). Sum-normalisation was
employed instead of z-score or min-max scaling, as it
avoids the extreme rescaling associated with dependence
on a single minimum or maximum value, maintains pro-
portional relationships among the original scores, and
provides bounded membership degrees suitable for
fuzzy aggregation and weighted combination (Hwang
and Yoon 1981; Tang et al. 2022). This normalisation
method has also been widely implemented in previous
studies (Tang et al. 2022; Zhang et al. 2024). The resulting
fuzzy relation matrix aggregates these membership
degrees:

m T2 - Tin

21 122 e Ton
R=TIyl=1. . . . (15)

Te61 62 . Ten
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Step 3: Determination of Weight Vector

The weight vector W describes the significance of
each evaluation factor. Assigning appropriate weights
to the evaluation factors reflects their relative impor-
tance in the final assessment.

W= [wy, wa..., Wy (16)

where w; represents the degree of membership for
each evaluation factor within U. The weight vectors
W, and W, correspond to the primary factor set
(U;) and the secondary factor set (U,), respectively.
For the primary factor set U;, the assigned weights
are W; =[0.50, 0.25, 0.25]. Among the three criteria,
efficiency is given the highest weight (0.50), while
practicality and proficiency share equal weights
(0.25 each). This weighting reflects the established
consensus that efficiency is the most critical factor
in defining IM-EDP relationships, as it reduces the
dispersion (ogppym) of EDP predictions (Aquib,
Sivasubramonian, and Martin Mai 2022; Giovenale,
Allin Cornell, and Esteva 2004; Luco and Allin Cor-
nell 2007; Vargas-Alzate, Hurtado, and Pujades
2021). At the same time, practicality and proficiency
are also integral to IM selection. Notably, since
proficiency inherently incorporates aspects of both
efficiency and practicality (Equation 8), prioritising
efficiency indirectly enhances proficiency without
requiring disproportionate emphasis (Khosravikia
and Clayton 2019). Accordingly, the chosen weight
W;=(0.50, 0.25, 0.25) provides a balanced evalu-
ation in which efficiency receives twice the weight
of the other two criteria, while all three factors retain
meaningful representation in the overall assessment.

For the secondary factor set U,, weights are assigned
to the individual metrics, W, =[0.125,0.125,0.
125,0.125,0.25,0.25]. Further W, was divided into sub-
vectors corresponding to each primary factor, Wy =
[Wl, W3, W3, W4] = [0.125, 0.125, 0.125, 0.125]; WZ,prac
= [ws] = [0.25]; Wy prof = [wes] = [0.25] respectively
for efficiency, practicality, and proficiency metrics.

Step 4: Aggregation and Final Fuzzy Scores

5.1. Aggregation of secondary factors into
primary factors

To reconcile the secondary factors with the primary
qualitative criteria, the secondary factors are aggregated
by weighted summation. Specifically, for each j'™ IM, the
membership degree for each primary factor is computed

as follows:
. 4
r; )= 3 Wi -1y, Efficiency
k=1
r}P ) — Waprac - 15 » Practicality (17)
P .
r; N — Wapror - T » Proficiency
where r]«(E), T;P), r}Pf is aggregated efficiency, practicality

and proficiency score for j'™ IM respectively.wyy is
weight for the k™ secondary metric. ry; is normalised
score of j™ IM on secondary factor k. This yields the pri-
mary factor membership matrix as shown in Equation
(18).

AD BB
Rprimary = | 77 AP .. 4P (18)
0

5.2. Final fuzzy scores and optimal IM selection

The ultimate fuzzy evaluation score for each IM is
obtained by the weighted summation of the primary fac-
tor memberships with the corresponding weights (Xue
and Yang 2014):

AB B e
B = Wprrimary = Wf Tip) rgp) R 1’,(1P)
rgpf) répf) O ()

- [bla b2> Y bn]
(19)

where O symbolises the fuzzy operations, and b; is the
degree of membership associated with each evaluation
criterion. The score b; represents the comprehensive
fuzzy evaluation for the j'™ IM and is given by Equation

(20).

3 .

b= Y Wirl) = 0.5 + 025 + 0257 (20)
i=1

where b is the final aggregated score for the ™ IM. In
this study, IM rankings are determined by the principle
of the maximum membership degree, denoted as by,
the optimal IM is identified by selecting the one with
the maximum fuzzy score, signifying it as the most
efficient, proficient, and practical predictor of the EDP.
byax = max b; 1)

1<j<n
Optimal IM = Vi, where by = byay (22)

where by, is the maximum final score across all IMs,
the IM, Vi corresponding to this score is selected as
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the optimal IM. The comprehensive evaluation results
for the maximum b, related to the optimal IM, with
RS as the EDP, are summarised in Figure 9. The top
two IMs identified from M; are VRMS and PGV
which have b,,,x values of 0.1927 and 0.1909, respect-
ively. In contrast, the top 2 IMs from M, include PGV
and SMV with by, values of 0.1983 and 0.1979 respect-
ively. Notably, PGV appears in the top two for both
methods, while VRMS is exclusive to M;. Consequently,
for embankment dams, PGV and VRMS have been
selected as the optimal IMs if we take M; and M, com-
bined. According to Giovenale, Allin Cornell, and Esteva
(2004), “hazard computability” refers to the ability to
compute seismic risk using current ground motion
attenuation relationships. Among the top two optimal
IMs (VRMS and PGV from M,; and PGV and SMV
from M,) obtained in this study, only the attenuation
model for PGV has been developed (Bahrampouri,
Rodriguez-Marek, and Green 2020; Danciu and Tselentis
2007; Tao et al. 2024), allowing for calculations at specific
sites and meeting the criteria for hazard computability.

5.3. Sensitivity analysis of primary factor weights

To evaluate the robustness of IM rankings with respect
to variability in the primary factor weights (W), a
Monte Carlo (MC) sensitivity analysis was performed
(Broekhuizen et al. 2015; Mazurek and Strzalka 2022;
Wieckowski and Satabun 2023). This analysis quantifies
how perturbations in the primary weight vector W; =

[0.5,0.25,0.25] affect the fuzzy comprehensive scores b;
(Equation 20) and, consequently, the ordinal ranking
of IMs under both PSDM methods.

The baseline weight vector is defined as whase = [0.5,
0.25, 0.25], in which wi*¢=0.5 corresponds to
efficiency, wb™° = 0.25 to practicality, and w3 =0.25
to proficiency. For each MC trial t=1, ..., N and each
factor k=1,2,3, an independent standard normal vari-

able is drawn as shown in Equation (23).
et,k ~ N(O’ 1) (23)

where &, represents the gaussian noise term associated
with factor k in trial t. These samples are used to gener-
ate multiplicative lognormal perturbations given in
Equation (24).

Ny = €750, logm, . ~ N(0, 07,) (29)

where 7, is the multiplicative noise factor applied to
the baseline weight wy* and o, is the standard devi-
ation controlling the typical magnitude of the pertur-
bation (Mazurek and Strzatka 2022). The lognormal
perturbation ensures strictly positive weights and multi-
plicative variation, which is more realistic than additive
noise, as negative weights are not meaningful (Limpert,
Stahel, and Abbt 2001; Mazurek and Strzatka 2022). The

unnormalised perturbed weights are:
e = Wity (25)

where Wy is the perturbed weight for factor k in trial ¢
before normalisation. The normalised perturbed weight

0.25
1=M1 =M2

0.15 1

0.1 1

Fuzzy Score (b,,,y)

0.05 1

] Rank 1 (0.198)
]
0.2 4

Rank 1 (0.193)

— %) > 2 < = < [ > < o < > 2]
< = < 2 g 2= ¢ 9 L ¢ = F 5 =
&} m = = = =3 7 7
< @) % >
&
Intensity Measures (IM)

Figure 9. Comparison of fuzzy score (b, values for 14 intensity measures (IMs) obtained using Method 1 (M;) and Method 2 (M,).
Blue bars represent M, results, and green bars represent M, results. The figure highlights the highest-ranked (Rank 1) and second-
highest-ranked (Rank 2) IMs for each method based on their by, values.
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vector is obtained as:

Wik Wi Mk
Wf,k = =—x (26)

K N
Zm:l Wtm Zm:l Wfrf‘se *MNem

where w}, is the normalised perturbed weight for factor
k, and K =3 is the total number of primary factors. For
each trial t, the perturbed weights W’ = [ Wy 3 Do
w’;mf,t] were substituted into Equation (20) to obtain
new fuzzy scores for each IM:

b](t) = wjﬁ,tr](E) + w;mc,t T;P) + c‘)>;>rtaj‘,t T;Pf) (27)
where, b is the fuzzy comprehensive score of IM; in
trial #; rjE>, r;P ), r;Pf are the efficiency, practicality, and
proficiency scores for IM;. IMs were ranked in descend-
ing order of b](t) to obtain the perturbed rank vector r,.

The robustness of IM rankings under perturbed pri-
mary weights is quantified using complementary
metrics. For each trial ¢, the mean absolute rank change
(A, is calculated as:

1 M
A= MZI: |1y — 17| (28)
j=

where, 7 is the rank of IM; in trial ¢, rf‘”e is the baseline
rank of IM;, and M is the total number of IMs. In
addition, the Spearman correlation (p7) between the
baseline rank vector (7p,.) and the perturbed rank vec-
tor (r;) was also computed:

pf = CorrSpearman(rbase: rt) (29)

where pi€ [—1,1]; values closer to 1 indicate that the
relative ordering of IMs is largely preserved. Higher
values of p; indicate that the relative ordering of IMs
is largely preserved under W; perturbations. A visual
summary of rank variability is presented through rank
heat maps. In these maps, row i corresponds to IM;, col-
umn j corresponds to rank j, and the colour intensity
represents the number of MC trials in which IM;
received rank j. Formally, the rank frequency matrix F
is defined as:

N
Fij =73 Ur,=j} (30)
=1

where F;; is the frequency of IM; attaining rank j, 1{-} is
the indicator function, and N is the total number of MC
trials. IMs with highly concentrated distributions indi-
cate stable rankings, while spread-out distributions
indicate higher uncertainty. The 5%, 50" (median),
and 95™ percentile ranks computed for each IM provide
an additional quantitative measure of rank uncertainty
(Broekhuizen et al. 2015; Wieckowski and Salabun

2023).
i) = Quantilep{rt)j}?]:l , p = 5%, 50%, 95% (31)

where 7; ) is the rank of IM; corresponding to the p®
percentile across all MC trials.

The sensitivity analysis was conducted with N =
10,000 MC trials. The results for the baseline case, cor-
responding to oy, =0.15 (~+15% variability), are
shown here. In M;, A; was 0.557, and a pf was 0.969
(median 0.978). IM-specific results show that VRMS
remained the top-ranked IM with low variability. For
M,, the results indicate even higher robustness, with
A; of 0.148 and a ptS of 0.991 (median 1). IM-specific
results show that PGV remained the top-ranked IM
with low variability.

Figure 10 illustrates the average absolute change in
fuzzy comprehensive scores resulting from pertur-
bation; both PSDM methods showed a very small
change in fuzzy scores (= 0.0056-0.0069). In M;, the
largest change (~0.0069) occurs for DRMS, followed
by PGD and VRMS, while MP shows the smallest
(~0.0056). In M,, the largest change (~0.007) is
observed for Al, followed by SMV and PGV, while
MP has the smallest change (~0.0062). The correspond-
ing rank-frequency heatmaps in Figure 11.

The 5%-95™ percentile rank intervals in Figure 12
further corroborates this stability. In M; most IMs
vary by fewer than two rank positions. Top-ranked IM
VRMS has a median rank of 1. IMs such as PGA, Al
and SMV display narrow uncertainty bands, whereas
DRMS, PP, MP and PGV|PGA exhibit slightly wider
intervals of 4-6 ranks. In M, again, IM yields more
compact intervals, with top rank IM PGV having a
median rank of 1, whereas PGA, ARMS, Al and SMA
exhibit slightly wider intervals of 3-4 ranks. Hence,
the top-ranked IMs (VRMS from M,; and PGV from
M,) found relatively insensitive to changes in W;.

To examine the influence of stronger perturbations,
O, was increased incrementally from 0.10 to 0.50. In
Figure 13, as expected, larger perturbations resulted in
slightly higher A; and lower pf. In M,, A; rose from
~ 0.40 to ~ 1, while pf decreased from ~ 0.98 to ~
0.86. In M,, the A; remained smaller (~ 0.06 to 1)
and p; changes only slightly (~ 0.995 to 0.965). Even
at the highest perturbation level (o), = 0.50), pf
remained above 0.85, indicating strong preservation of
relative rank order. This indicates that IM rankings
remain largely unaffected by approximately +10-50 %
variations in the Wy, thereby demonstrating the robust-
ness of the ranking framework and its ability to consist-
ently preserve the relative ordering of IMs (Limpert,
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Figure 10. Average absolute change in fuzzy scores for different Intensity Measures (IMs) under Monte Carlo perturbations of the
primary factor weights (at o), = 0.15): (a) Method 1; (b) Method 2.
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Figure 11. Rank distribution of intensity measures (IMs) under Monte Carlo perturbations of the primary factor weights (at o}, = 0.15):
(a) Method 1; (b) Method 2. Colour intensity represents the frequency of each IM attaining a given rank position across 10,000 trials.
Concentrated yellow bands denote stable ranks, while diffuse blue regions indicate higher variability in ranks.

Stahel, and Abbt 2001; Saltelli et al. 2008; Wigckowski
and Salabun 2023).

6. Seismic fragility analysis

Fragility curves provide a quantitative approach to
rapidly assess a structure’s seismic response. These
curves give the likelihood of dams exceeding a specific
damage state in response to a given level of ground
shaking, influenced by IMs such as PGA or Sa (Hur-
tado-Lopez and Mayoral-Villa 2019; Rathje and He
2022; Saeidi et al. 2019; Zentner et al. 2011). Conducting
a seismic fragility assessment is crucial for evaluating
the vulnerability of embankment dams subjected to
earthquake loading. This approach follows a probabilis-
tic framework, integrating PSDMs and damage state
(DS) thresholds to generate fragility curves that quantify

the probability of exceeding different DS levels for vary-
ing IMs. The methodology adopted here is consistent
with established procedures in recent fragility studies
(Khalid et al. 2023; Rathje and He 2022).

6.1. Fragility function

The fragility function expresses the probability that the
EDP exceeds a specified DS threshold for a given IM. It
is commonly formulated in the EDP domain as in
Equation (32) (Khalid et al. 2023; Rathje and He 2022).

\% o-lanDP + O-IZDS

P(EDP = DS|IM) — 1 (I)<ln (DS) — (Ina + blnIM))

(32)
where, P(EDP > DS|IM) represents the probability of
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exceeding a given DS, @ (-) is the standard normal
cumulative distribution function (CDF), a and b are
regression coeflicients from the PSDM, o1, gpp is the dis-
persion of demand given IM, and opg is the uncertainty
in the damage state threshold (DS eshora) (Cornell et al.
2002; Jalayer and Allin Cornell 2009). The mean
DSihreshold in log-space is:

Mps = In (DSthreshold) (33)

Equation (32) can be algebraically rearranged into
the IM-domain as:

P(EDP > DS|IM) = @(M> (34)

OIM

where, ppps is the log-median intensity measure
capacity associated with a given DS.

_ In(DSreshola) —Ina
Mimips = b

(35)

The total uncertainty in the fragility function is
expressed by Equation (36).

P Thepp T s (36)
b

where, opg is the standard deviation reflecting epistemic
uncertainty in the DS threshold. Equations (32) and (34)
are mathematically equivalent; the latter form is
implemented in this study. Similar IM-domain fragility
formulations have been presented in prior research
(Bakalis and Vamvatsikos 2018; Flenga and Favvata
2021). The residual dispersion ogpp is estimated from
the regression model as:

> (In(EDP;) — (In(a) + bln(IM))) 2
OEDP = N2

(37)

where N is the number of ground motion records, In
(EDP;) is the log-transformed value of the EDP for the
ith earthquake record. In(a) + b-1In(IM) is the pre-
dicted log-transformed EDP value for the i earthquake
record, based on the regression model. The RS functions
as the EDP and is calculated using Equation (3), while
the IM is obtained from the input motion. As the
EDP, the RS captures the vertical impacts of deviatoric
sliding deformation, co-seismic volumetric changes,
and potential post-liquefaction volumetric recompres-
sion. It is assumed that the RS reflects the dam’s suscep-
tibility to cracking (He and Rathje 2024).

6.1.1. Damage states
Damage states (DS) serve as key indicators for charac-
terising the seismic response and extent of damage

sustained by a structure and should be readily obser-
vable or measurable during post-event inspections. In
this study, DS are primarily defined using RS, calcu-
lated from Equation (3). RS is the most widely
adopted EDP in fragility assessments of earthen
dams (He and Rathje 2024) because it is dimension-
less, straightforward to measure in the field using
standard survey techniques, and supported by case
histories and empirical guidelines linking settlement
magnitude to observed performance (Fell et al. 2005;
Pells and Fell 2003; Swaisgood 2003). It was selected
as the sole quantitative indicator of DS due to its con-
sistency, reproducibility, and established application in
analytical fragility studies (Kwak et al. 2016; Regina
et al. 2023). Its primary advantage lies in directly
reflecting permanent crest deformation, which is
both observable in the field and replicable in numeri-
cal simulations.

Although RS is the only metric employed here, it
effectively represents a broader, multi-component
damage framework: earth dam damage can also mani-
fest through freeboard reduction, global instability,
filter displacements, normalised crest settlement
(NCS), or Fell damage classes (Regina et al. 2023; Swais-
good 2003). Many of these indicators correlate strongly
with crest settlement, and NCS is essentially a normal-
ised form of RS empirically linked to post-earthquake
dam performance. By relying on RS, the approach main-
tains simplicity, reproducibility, and practical applica-
bility, while remaining consistent with established
empirical and analytical frameworks for fragility
modelling.

For fragility modelling, DS are classified into five
levels based on RS: DS1 (Minor: 0.03-0.2%), DS2
(Moderate: 0.2-0.5%), DS3 (Major: 0.5-1.5%), DS4
(Severe: 1.5-5%), and DS5 (Collapse: >5%). These
thresholds follow prior classifications (Swaisgood
2003; Pells and Fell 2003) with a minor modification
to omit a separate no/slight category (RS <0.03%).
Similar RS-based classification schemes have also
been applied in recent studies (Khalid et al. 2023;
Rathje and He 2022).

It is important to note that DS, as defined by RS, cor-
relates with, but is not equivalent to, operational per-
formance levels. Performance levels also consider
factors such as functionality, repairability, and residual
capacity (Fell et al. 2005; Regina et al. 2023). For
decision-making, RS thresholds are mapped to perform-
ance categories: DS1-lower DS2 to serviceable con-
ditions; upper DS2-lower DS3 to life-safety or
restricted operation; upper DS3- lower DS4 to tran-
sition from life-safety to collapse-prevention conditions;
and upper DS4-DS5 to collapse-prevention or breach
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Figure 13. Variation of mean absolute rank change and mean Spearman correlation with increasing perturbation range (+10-50%) of

primary factor weights: (a) Method 1; (b) Method 2.

risk. This mapping ensures that RS-based DS definitions
convey both the physical extent of deformation and the
broader implications for dam safety, functionality, and
residual capacity (Fell et al. 2005; Pells and Fell 2003;
Regina et al. 2023; Swaisgood 2003).

6.2. Fragility curves

Fragility curves for embankment dams were developed
for the optimal IMs using PSDMs from M, and M,. In
M,, scaling ground motion records is crucial for evalu-
ating seismic vulnerability at different ground motion
intensities. This process adjusts the IM of the original
record to simulate various seismic loading levels. The
resulting fragility curves show the probability of

exceeding specific DS based on seismic IM, offering
insights into damage likelihood under varying earth-
quake IMs. Figure 14(a,b) illustrates the seismic fragi-
lity curves for the top two IMs derived from M,,
while Figure 14(c,d) presents the corresponding curves
for the top two IMs from M,. These curves facilitate a
comparison of the failure probabilities associated with
each IM. Notably, for the minor damage state (DS =
0.03%), VRMS displays a steeper slope, indicating
that even a slight increase in this IM results in a con-
siderably higher probability of exceedance compared
to the other two IMs in M;. Additionally, at very low
values (e.g. 0.5) of PGV and SMV, the probability of
exceedance has surpassed at least DS1, DS2, DS3, and
DS4 in M,.
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Figure 14. Seismic fragility curves for the top two intensity measures (IMs). Panels (a) and (b) present the fragility functions obtained
from Method 1 for VRMS and PGV, respectively, while panels (c) and (d) correspond to Method 2 for PGV and SMV, respectively.

6.2.1. Comparison of fragility outcomes using
conventional and optimal intensity measures
To examine the influence of IM selection on seismic fra-
gility estimation, a comparative analysis was conducted
between the conventional IM (PGA) and the velocity-
based optimal IMs, VRMS (from M;) and PGV (from
M,). The Figure 15(a-j) illustrate the fragility curves,
evaluating the differences in the probability of exceeding
each damage state (DS1-DS5). In each case, the PGA-
based curve is presented for reference, allowing visual
comparison with the curves obtained for the optimal
IMs. The results demonstrate that PGA systematically
underestimates the probability of exceeding all DS rela-
tive to the velocity-based IMs. For VRMS (Figure 15(a,c,
e,g,1)), the maximum underestimation by PGA reaches
41% for DSI1, 33% for DS2, 28% for DS3, 21% for
DS4, and 4% for DS5. For PGV (Figure 15(b,d,f,h,i,j)),
the corresponding maximum underestimation is 21%
for DS1, 19% for DS2, 15% for DS3, 11% for DS4, and
7% for DS5. These differences quantify the extent to
which exclusive use of PGA can underestimate seismic
risk. The disparity between PGA and velocity-based
IMs fragility curves is most evident for the lower
damage states (DS1-DS3). At higher damage states
(DS4-DS5), the curves converge as deformation
approaches ultimate capacity, although underestimation
by PGA remains apparent. The largest discrepancies
were observed at 41% for VRMS (M,;, DS1) and 21%
for PGV (M,, DS1).

Across both PSDM frameworks, the velocity-based
IMs consistently outperform PGA in predicting damage

probability. In the empirical PSDM (M), VRMS, which
incorporates both amplitude and duration effects, pro-
vides a more reliable measure of cumulative damage
potential. In the numerical PSDM (M,), PGV, which
represents peak ground velocity and correlates with
deformation demands, yields higher exceedance prob-
abilities. These results demonstrate that velocity-based
IMs better capture the dominant physical mechanisms
governing the seismic response of embankment dams.
As shown in the earlier evaluation metrics (Tables 5
and 6), VRMS and PGV exhibit higher correlation
coefficients (r, R*) and lower conditional dispersion
(0eppjim)> While PGA is not even in the top 5 IMs.
These quantitative metrics support the observed fragi-
lity outcomes and confirm that PGA-based fragility
models underestimate seismic vulnerability. Overall,
the results highlight the importance of selecting optimal
IMs, such as VRMS or PGV, that accurately represent
the structural response characteristics and site-specific
ground-motion conditions.

6.2.2. Comparison of optimal IMs across PSDM
methods

The optimal IMs VRMS for the empirical PSDM (M,)
and PGV for the numerical PSDM (M,) are velocity-
based IMs; however, their predictive behaviour can
vary due to differences in physical meaning, IM-EDP
dataset characteristics, and modelling approach. PGV,
representing the peak instantaneous ground velocity,
correlates strongly with peak and permanent defor-
mation demands (Khalid et al. 2023; Rathje and He
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Figure 15. Comparison of fragility curves developed using the conventional intensity measure (PGA) and the optimal IMs (VRMS from
Method 1 (M;) and PGV from Method 2 (M,)). Panels (a), (c), (e), (g), (i) correspond to M; (VRMS), while panels (b), (d), (f), (h), (j)
correspond to M, (PGV) for DS1-DS5, respectively. Blue lines represent the PGAs, and orange lines represent the optimal IMs. Anno-
tated values indicate percentage-point differences in exceedance probability between IMs at each damage state, quantifying the

underestimation associated with PGA.

2022). In contrast, VRMS captures the cumulative vel-
ocity energy of ground motion and is therefore more
responsive to duration-dependent, energy-related
demands (Bray and Travasarou 2007; Luco and Allin
Cornell 2007; Rathje and Antonakos 2011).

In M;, which is based on seismic records from instru-
mented embankment dams of different heights

predominantly subjected to interplate ground motions,
the heterogeneous dataset of EDP and IM from different
embankment types reflects prolonged shaking and
variability in embankment dam types. Under such con-
ditions, where cumulative energy governs deformation,
VRMS provides a more representative measure of struc-
tural response. Conversely, the numerical PSDM (M,)
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Figure 15. Continued.

employs a homogeneous embankment dam FEM model
and a comprehensive suite of scaled ground motions
encompassing both interplate and intraplate events.
The resulting deformations are primarily controlled by
peak response amplitudes, for which PGV exhibits a
stronger correlation with crest displacement.

The definition of the EDP further supports this
difference. In M, crest settlement is defined as the accu-
mulated vertical displacement at instrumented points
along the crest, emphasising cumulative response. In
M,, it is defined as the average crest displacement
along the dam crest, emphasising peak deformation.
These differences in EDP definition, combined with
the nature of the ground-motion datasets, can account
for the selection of distinct optimal IMs. Accordingly,
the optimal IMs identified in this study reflect the con-
trasting characteristics of the two PSDM frameworks:
VRMS is better suited for different types of instrumen-
ted embankment dams having different heights,
whereas PGV is more appropriate for homogeneous
dam configurations. Recognising these distinctions
ensures that the derived fragility relationships remain
physically consistent and representative of embank-
ment-dam seismic performance.
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7. Practical implications for seismic design
and safety assessment of dams

The results of this study emphasise the need for optimal
IMs and dam-specific fragility functions to realistically
capture seismic demand, especially for deformation-
dominated failure modes. Conditioning fragilities,
monitoring thresholds, and design spectra based on
PGV and VRMS provide a more representative measure
of seismic energy input, consistent with site- and per-
formance-specific guidelines (FEMA 2005; ICOLD
2010).

7.1. Implication for seismic design

Traditional design approaches often rely on PGA or Sa
based design spectra; however, this study found that
PGA-based fragility curves underestimate the damage
probability compared to optimal IMs. So, integrating
PGV and VRMS into design spectra can ensure that
deformation and associated risk are properly rep-
resented. Ground-motion selection and scaling can be
adjusted to preserve PGV and VRMS targets, in
addition to PGA. Numerical and empirical models can
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be calibrated using instrumented embankment dam
records (Pells and Fell 2003; USACE 2007; USSD 2022).

7.2. Implication for the safety assessment of
existing dams

PGV and VRMS-based fragility curves enable the set-
ting of alarm thresholds, the interpretation of instru-
mentation data, and the guidance of post-earthquake
assessments. Real-time computation of PGV and
VRMS from strong-motion and pore-pressure sensors
supports rapid post-earthquake assessment and risk-
informed operational decisions (USACE 1995).
Additionally, velocity-based fragility functions can
inform retrofitting strategies aimed at reducing defor-
mation vulnerability. Measures such as slope flattening,
downstream buttressing, and reinforcement can be
prioritised based on PGV and VRMS-based fragility
curves (Aljawhari, Gentile, and Galasso 2022).

7.3. Integration into probabilistic seismic risk
assessment

In probabilistic seismic risk assessment, the annual
probability of exceeding a DS, denoted 94, can be
obtained by combining the IM hazard with the IM-con-
ditional fragility:

Dy = ojoP(DS > ds|IM = x)dApg(x) (38)
0

where Ay (x) is the annual frequency of exceeding IM
level x. Here, 94 represents the yearly probability that
an embankment dam will experience at least the
specified DS. Using PGV and VRMS-based fragilities
reduces uncertainty for deformation-driven failure
modes and provides more credible annual exceedance
estimates, supporting performance-based dam safety
decisions and the prioritisation of inspections, monitor-
ing, and retrofits (FEMA 2005; ICOLD 2010).

8. Conclusions

The increasing focus on performance-based assess-
ments of multifunctional structures, such as embank-
ment dams, underscores the urgent need to ensure
their safety during seismic events. Given their critical
roles in water storage and electricity generation, it is
essential to enhance methodologies used to evaluate
seismic performance. This study examined 14 IMs
that influence the seismic vulnerability of embankment
dams, classifying them into three categories: three based
on frequency, two based on energy, and nine based on
amplitude. PSDMs were developed using two distinct

approaches: one based on empirical data from historical
earthquake records of instrumented embankment dams,
and another using numerical simulations with finite
element method models subjected to ground motion
records from both free-field and dam site stations. A
quantitative framework was proposed to identify the
optimal IMs for fragility curve development, assessing
the optimality of 14 IMs across three criteria: efficiency,
practicality, and proficiency. The fuzzy comprehensive
evaluation method was subsequently applied to deter-
mine the optimal IMs for both empirical and numerical
simulation-based PSDMs. Dam damage was classified
into five states using relative crest settlement ratio as
the engineering demand parameter. The seismic fragi-
lity curves were developed using PSDMs from both
empirical and numerical data. The key findings of this
study are summarised as follows:

e Velocity-based IMs were superior for characterising
seismic vulnerability. VRMS was identified as the
optimal IM for empirical PSDMs (M), while PGV
was optimal for numerical PSDMs (M,), achieving
the highest fuzzy evaluation scores. The commonly
used IM, PGA, did not satisfy the optimality criteria,
while EDA and Al (empirical PSDMs) and EDA and
DRMS (numerical PSDMs) were identified as the
least effective IMs.

¢ PGA systematically underestimates the probability of
exceeding each defined DS relative to optimal IMs
(VRMS and PGV). For VRMS, the maximum under-
estimation by PGA reaches 41% for DS1, 33% for
DS2, 28% for DS3, 21% for DS4, and 4% for DS5.
Similarly, for PGV, the maximum underestimation
by PGA reaches 21% for DS1, 19% for DS2, 15%
for DS3, 11% for DS4, and 7% for DS5. These results
indicate that reliance on PGA alone can produce
non-conservative predictions of seismic damage.

e Empirical PSDMs captured the variability in seismic
responses across multiple instrumented embankment
dams of different heights, emphasising duration-sen-
sitive measures like VRMS, whereas numerical
PSDMs provided consistent predictions for a homo-
geneous dam, with PGV preferred for representing
peak instantaneous velocity; differences in engineer-
ing demand parameters (accumulated vertical displa-
cement for empirical PSDM versus average crest
displacement for numerical PSDM) further support
selecting  VRMS for instrumented embankment
dam types of different heights and PGV for homo-
geneous embankment dam.

¢ Monte Carlo sensitivity analysis (10,000 trials) results
indicate that VRMS and PGV showed minimal
changes in fuzzy scores (0.005-0.007), narrow
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percentile intervals, and high Spearman correlation
coefficients (>0.85) under +10-50% perturbations
of primary criteria weight, indicating robustness
against moderate uncertainty.

e Based on these findings, VRMS is recommended as
optimal IM for instrumented embankment dams of
different types and heights, and PGV for homo-
geneous embankment dams. Velocity-based IMs pro-
vide the most reliable representation of seismic
demand, supporting performance-based design,
risk-informed safety assessment, and prioritisation
of monitoring and retrofitting interventions.

Overall, these findings offer valuable insights into the
seismic vulnerability of embankment dams and under-
score the need for ongoing enhancements to assessment
frameworks to better safeguard these critical structures
against potential earthquake impacts. The results of
the numerical simulation-based PSDMs (M,) specifi-
cally pertain to homogeneous embankment dams with
defined geometrical and geotechnical characteristics;
different outcomes may occur for other dam types
with varying geometries and mechanical properties.
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Appendix A

Intensity measure (IM) description and properties

Ground motion parameters encompass at least one of the
three fundamental characteristics of an earthquake: ampli-
tude, frequency content, and duration (Kramer and Stewart
2024). The 14 different Intensity Measures (IMs) analyzed
in this study are outlined below. The parameters Peak Ground
Acceleration (PGA), Peak Ground Velocity (PGV), and Peak
Ground Displacement (PGD) reflect the maximum ampli-
tudes of acceleration, velocity, and displacement recorded
(Kramer and Stewart 2024):

(1) Peak ground acceleration (PGA) is the maximum ground
acceleration recorded during an earthquake and is given by:

PGA = max |a(t)|

(2) Peak ground velocity (PGV) is the maximum ground vel-
ocity (first integration of acceleration) and is given by:

PGV = max |v(t)|

(3) Peak ground displacement (PGD) is the maximum
ground displacement (double integration of acceleration)
and is given by:

PGD = max |d(t)|

(4) Sustained Maximum acceleration (SMA):

Nuttli (1979) introduced this parameter, representing the
sustained maximum acceleration recorded over three cycles.
It is defined as the third highest absolute value of acceleration
within the time history, where a value must exceed those
recorded 20 steps before and 20 steps after to be considered
a “maximum.”

SMA = the 3rd highest |a(t)|
(5) Sustained Maximum Velocity (SMV):

Nuttli (1979) introduced this parameter, which represents
the sustained maximum velocity achieved during three cycles.
It is defined as the third-highest absolute value of velocity in
the time history. It is important to note that for an absolute
value to be classified as a “maximum”, it must surpass the
values recorded 20 steps before and 20 steps after it.

SMV = the 3rd highest |v(t)|

(6) The ratio of PGV and PGA is given by:

PGV max |v(?)|
PGA ~ max |a(t)]

(7) Mean period (MP) is defined as:

1
>.C (7)
MP= — i/
> G
where C; = Fourier amplitudes of the entire accelerogram; f; =

discrete Fourier transform frequencies between 0.25 and
20 Hz (Rathje, Abrahamson, and Bray 1998).

for 0.25 Hz < f; < 20Hz

(8) The predominant period (PP) is defined as the period of
vibration corresponding to the maximum value of the
smoothed Fourier amplitude spectrum calculated at 5%
damping (Kramer and Stewart 2024).

(9) The root mean square acceleration (ARMS) is the effec-
tive (RMS) acceleration over the significant duration
and is defined as:

total

] a(t)?dt

Liotal 0

ARMS =

(10) The root mean square velocity (VRMS) is the RMS of
velocity over the record and is defined as:

1 total

VRMS = YO

tiotal 0

(11) The root mean square displacement (DRMS) is the RMS
of displacement over the record and is defined as:

trotal

d(t)*dt
0

DRMS =

total

(12) The Arias Intensity (AI) is computed as:

tmml
Al = L j [a(t)]?dt
2g 0

(13) The Cumulative Absolute Velocity CAV is computed as:

froral
[ [a(t)]dt

0

CAV =

(14) Effective Design Acceleration (EDA):

This parameter corresponds to the peak acceleration value
identified after low-pass filtering of the input time history with
a cut-off frequency of 9 Hz (Benjamin 1988).
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