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Optimal ground motion intensity measures for the seismic vulnerability 
assessment of embankment dams
Surya Prakash and P. Anbazhagan

Department of Civil Engineering, Indian Institute of Science, Bangalore, India

ABSTRACT  
The seismic response of embankment dams is critical for effective seismic design, yet probabilistic 
seismic demand models (PSDMs) for these structures remain underexplored. This study develops 
PSDMs to identify the optimal Intensity Measure (IM) for embankment dams by evaluating 14 
different IMs. Two approaches are employed for PSDM development: one utilises empirical data 
from earthquake records from instrumented embankment dams, while the other is based on 
numerical simulations using a Finite Element Method model of dam subjected to ground 
motion records from free-field and dam site stations. A novel fuzzy comprehensive IM 
evaluation framework is proposed, and using this framework, it was found that Root Mean 
Square Velocity (VRMS) from empirical PSDM and Peak Ground Velocity (PGV) from the 
numerical analysis PSDM are the most optimal IMs. In contrast, Effective Design Acceleration is 
least optimal IM across both approaches. The study then classifies dam damage into five states 
using relative crest settlement ratio as the engineering demand parameter. Seismic fragility 
analysis conducted through both PSDM approaches indicates that Peak Ground Acceleration, a 
commonly used IM, significantly underestimates the probability of damage to embankment 
dams, with maximum underestimations of 44% and 30% observed using the empirical and 
numerical PSDMs, respectively.
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1. Introduction

Embankment dams are essential for water conservation, 
domestic water supply, agricultural irrigation, and 
industrial use (Beck, Claassen, and Hundt 2012; Busch 
2021). Additionally, these structures produce hydroelec
tric power, which lessens reliance on fossil fuels and 
provides renewable energy (Schleiss 2018). Further
more, by reducing storm surges and heavy rainfall, 
these dams are essential for flood control (Chen et al. 
2021). Their design and construction must carefully 
consider environmental challenges like water level 
changes and flooding risks (Adamo et al. 2020; Zheng 
et al. 2023). A major safety risk is their susceptibility 
to seismic activity, as earthquakes can threaten their 
stability, potentially causing catastrophic flooding, loss 
of life, and significant environmental and financial 
damage (Gordan et al. 2021; Liu et al. 2015; L. M. 
Zhang, Xu, and Jia 2009).

The seismic safety evaluation of embankment dams 
has evolved significantly over the past decades, progres
sing from simplified deterministic analyses to advanced 
numerical and probabilistic frameworks. Early assess
ment methods were largely empirical and relied on 
expert judgment or damage observations from past 

earthquakes (Xu and Pang 2024). However, limited 
case data and high site-specific variability make their 
use less frequent. Pseudo-static analysis, one of the 
first systematic approaches, applies an equivalent hori
zontal seismic coefficient but oversimplifies transient 
effects, resulting in conservative safety factors (Akhlaghi 
and Nikkar 2014; Seed 1965). The Newmark sliding- 
block model (Newmark 1965) enhanced this framework 
by estimating cumulative displacements once ground 
accelerations exceed a threshold yield acceleration, 
and it has been widely used for crest settlement esti
mation (Regina et al. 2023). Nevertheless, assumptions 
of rigid-block behaviour neglect distributed defor
mations, cracking, and pore-pressure effects.

Advances in computational tools have established the 
numerical modelling methods like finite-element 
method (FEM) and finite-difference method (FDM) as 
standards for seismic evaluation of dams (Regina et al. 
2023; Xu and Pang 2024). These models capture dam– 
foundation–reservoir interaction, nonlinear material 
behaviour, pore-pressure buildup, and complex geome
tries. Experimental methods, such as shaking-table and 
centrifuge tests, field monitoring with piezometers and 
weirs, and geotechnical investigations of liquefaction 
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potential, complement numerical analyses, providing 
comprehensive seismic safety assessments of embank
ment dams (Xu and Pang 2024).

Probabilistic methods explicitly quantify uncertain
ties in ground motion, material properties, and struc
tural behaviour, yielding risk-based rather than 
deterministic outcomes. Recent studies have demon
strated the importance of such probabilistic frameworks 
in dam and geotechnical risk assessment, particularly 
when integrating monitoring data or characterising geo
logical and hazard-related uncertainties (Jiang et al. 
2025; Peng et al. 2024; Qi et al. 2024). Performance- 
based earthquake engineering (PBEE) represents a 
widely adopted probabilistic framework that integrates 
seismic hazard, structural response, and damage or loss 
estimation to support risk-informed decisions (Huang 
et al. 2009; Moehle and Deierlein 2004). Originally 
developed for buildings and bridges, PBEE has been 
extended to dam safety, where it links intensity 
measures (IMs) to engineering demand parameters 
(EDPs) through IM–EDP relationships and fragility 
curves (Giusto 2025; Tartaglia, D’Aniello, and Land
olfo 2022). Enhancing PBEE for dams requires 
accounting for both human and economic conse
quences of earthquake-induced damage (Zerbe and 
Falit-Baiamonte 2001). The framework generally 
involves site-specific hazard analysis, dam response 
evaluation, estimation of damage probabilities, and 
assessment of repair or loss consequences (Heresi 
and Miranda 2023).

Probabilistic Seismic Demand Models (PSDMs) 
statistically relate IMs to EDPs, forming the basis for 
fragility analysis and enabling probabilistic estimation 
of damage exceedance. Empirical PSDMs use earth
quake case histories (Ghaemi and Konrad 2023; Vahe
difard and Meehan 2011), while simulation-based 
PSDMs rely on numerical models calibrated with 
site data (Macedo 2015). Recent developments in 
hybrid and machine-learning-based PSDMs have 
enhanced computational efficiency and predictive 
capability (Mohammad Amin Hariri-Ardebili, Chen, 
and Mahdavi 2022; Salazar and Hariri-Ardebili 2022) 
but remain exploratory. Existing PSDMs are often 
developed for specific types of dams. To the author’s 
knowledge, PSDMs directly derived from instrumen
ted dam’s data have not been systematically devel
oped, and no study has built PSDMs and fragility 
curves in parallel using both empirical and numerical 
data-based PSDMs for embankment dams. Compar
able efforts have been made for levees; Kwak et al. 
(2016) characterised the seismic fragility of levees 
using field performance data, and Liu (2024) con
ducted a system-level seismic risk assessment of 

California’s levees, highlighting the potential for inte
grated studies in embankment dams.

Within the PBEE framework, selecting an appropri
ate IM is a crucial step, as the dispersion of EDPs and 
the uncertainty of fragility functions are highly depen
dent on the chosen IM (Huang et al. 2021). Traditional 
PSDMs commonly rely on a single IM, generally Peak 
Ground Acceleration (PGA). Recent studies have 
explored alternative IMs that better represent ground 
motion complexity and its influence on dam response 
(Armstrong, Kishida, and Park 2020; Khalid et al. 
2023; Regina et al. 2023). Arias Intensity (AI) has been 
identified as a reliable predictor of deformation in 
earth dams (Armstrong, Kishida, and Park 2020). Simi
larly, Khalid et al. (2023) demonstrated that Effective 
Design Acceleration (EDA), Sustained Maximum 
Acceleration (SMA), Root Mean Square Acceleration 
(ARMS), Peak Ground Velocity (PGV), and Character
istic Intensity (IC) provide improved predictive per
formance for concrete-faced rockfill dams. Regina et 
al. (2023) further demonstrated that Cumulative Absol
ute Velocity (CAV) is particularly effective in capturing 
the nonlinear deformation behaviour of earthen dams 
through FEM analyses. Hence, the optimal choice of 
IM varies across different dam types, and most of the 
existing IM evaluations are commonly based on simu
lation-based PSDM. To the author’s knowledge, instru
mented embankment dam seismic record data have not 
yet been systematically used for either PSDM develop
ment or IM evaluation, and no study has systematically 
evaluated candidate IMs using both empirical and simu
lation data within a unified framework, underscoring 
the need for integrated research to reduce uncertainty 
in PSDM predictions for embankment dams.

The present study evaluates a range of candidate IMs 
that are critical for assessing the seismic vulnerability of 
embankment dams. Fourteen IMs influencing dam 
response are considered and grouped into frequency, 
energy, and amplitude based IMs. Probabilistic Seismic 
Demand Models (PSDMs) are developed using two 
complementary approaches: the first employs empirical 
data from earthquake records from instrumented 
embankment dams, while the second relies on FEM 
simulations of a homogeneous embankment dam sub
jected to recorded ground motions. The empirical 
PSDM yields IMs that are broadly applicable to different 
types of embankment dams, whereas the numerical 
PSDM provides optimal IMs applicable to homo
geneous embankment dams. The performance of each 
IM is assessed in terms of efficiency, practicality, and 
proficiency. A structured fuzzy logic evaluation frame
work is proposed to integrate these criteria and identify 
the optimal IMs for assessing the seismic vulnerability 
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of embankment dams. Finally, seismic fragility analyses 
are conducted using both empirical and numerical 
PSDMs to ensure a consistent and reliable evaluation 
of dam performance.

The novelty of this work includes developing empiri
cal and numerical data-based PSDM within a unified 
framework to enhance the reliability of optimal IM 
selection and vulnerability assessment of embankment 
dams. The research advances existing studies by intro
ducing a structured fuzzy logic–based evaluation frame
work and, for the first time, proposing optimal IM 
applicable to different types of instrumented embank
ment dams and homogeneous embankment dams. Fur
thermore, the study establishes seismic fragility curves 
derived from both empirical and simulation-based 
PSDMs, providing a comprehensive and consistent 
basis for the seismic vulnerability assessment of 
embankment dams.

2. Ground motion intensity measures

Amplitude, frequency content, and duration are among 
the attributes of ground motion intensity measures 
(IMs) that are essential for evaluating the performance 
and safety of structures (Kramer and Stewart 2024; 
Zhang et al. 2025). Selecting appropriate IMs is crucial 
when developing IM-EDP relations for embankment 
dams to accurately gauge seismic vulnerability. Common 
IMs include peak ground acceleration (PGA), peak 
ground velocity (PGV), and spectral acceleration (Sa) at 
various periods. With the increasing availability of 
recorded ground motion data, modern IMs have been 
developed to capture additional aspects of seismic exci
tation and improve correlations with EDPs. In this 
study, fourteen representative IMs were derived from 
earthquake acceleration time histories using Seismo
Signal software (Seismosoft 2024). These IMs encompass 
the three principal families widely recognised in earth
quake engineering: amplitude-based (PGA, PGV, PGD, 
SMA, SMV, EDA), frequency-based (ARMS, VRMS, 
DRMS, PGV/PGA, PP, MP), and energy-based (AI, 
CAV). Together, these measures capture the primary fac
tors that control the response of geotechnical systems 
(Housner 1952; Arias 1970; USACE 2024). The selected 
IMs are consistent with standard engineering practice 
and follow FEMA and USACE guidelines, which rec
ommend PGA, PGV, PGD, and spectrum-based 
measures for assessing the effects of ground motion on 
critical infrastructure (FEMA 2020; USACE 2007).

Some less-commonly used IMs, such as particular 
definitions of significant duration and cumulative 
squared acceleration (CSA), were not included in this 
study. This choice preserves interpretability by limiting 

IMs that convey very similar information. Duration- 
related and cumulative effects are already represented 
by AI, CAV, ARMS, and VRMS, while spectral and 
period-based measures capture frequency content and 
resonance potential. CSA is proportional to the time 
integral of acceleration squared and is therefore closely 
related to AI. Studies have shown that AI and CSA are 
strongly correlated and that CSA adds little extra predic
tive value for most geotechnical applications (Arias 
1970; Baltay, Hanks, and Abrahamson 2019; Bradley 
2015). Table 1 summarises these IMs and their typical 
use in dam and soil structure, while detailed definitions 
are provided in Appendix A.

3. IM-EDP relationship

Evaluating structural performance under dynamic loads 
requires an understanding of the relationship between 
IMs and EDPs. IMs show the severity of ground motion, 
whereas EDPs show structural responses (Rathje and He 
2022). Evaluations of seismic risk are improved by a 
strong IM-EDP correlation. Pinzón et al. (2023) demon
strate that metrics like Sa at a building’s fundamental 
period correlate with EDPs more closely than more tra
ditional IMs like PGA, supporting the idea that struc
tural dynamics should be added to IMs. To predict 
seismic-induced deformations and maintain structural 
integrity, IM-EDP relationships are essential for 
embankment dams. The choice of IM has a major 
impact on crest settlements and failure probabilities, 
so specific IM-EDP relation models are required for 
seismic evaluations (Rathje and He 2022). Accurate esti
mates of earthquake-induced displacements require 
detailed analyses, as probabilistic seismic hazard ana
lyses (PSHA) often miss complex structural responses 
(Ghahreman-Nejad and Kan 2017). Thus, specialised 
analyses within the PBEE framework are vital for asses
sing the seismic performance of embankment dams.

PSDMs are utilised to describe the seismic response 
of structures by defining a probabilistic relation between 
ground motion IMs and EDPs (Regina et al. 2023). 
These models are founded on the assumptions that 
EDPs are distributed lognormally; there exists a logar
ithmic, linear relationship between EDP and IM, and 
the logarithmic standard deviation of EDPs is constant 
(Cornell et al. 2002). The relationship between EDPs 
and IMs is expressed through a power function, as out
lined in Equation (1):

EDP = a (IM)b (1) 

where, a and b are regression coefficients derived from 
regression analysis, while EDP is the engineering 
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demand parameter. The assumption of a power func
tion relationship, as described above, has been widely 
applied in the fragility analysis of various structural sys
tems. Additionally, Equation (1) can be reformulated 
into the form of a logarithmic normal linear regression 
model, provided that the seismic demand follows a log
normal distribution (Dhiman et al. 2024; Lee et al. 
2019), as illustrated in Equation (2):

ln (EDP) = ln(a)+ b · ln (IM) (2) 

where a and b represent the antilogarithm and slope of 
the perpendicular offset in the PSDM relationship. The 
following two primary methodologies can establish the 
relationship between the IM and the EDP using PSDM:

3.1. Method 1: empirical analysis (using 
earthquake records from instrumented dams)

An empirical PSDM is constructed using observed data 
rather than numerical simulations. This data can come 
from post-earthquake damage surveys that analyze 
how structures performed during past earthquakes 
(Khanmohammadi et al. 2023; Lozano and Tien 2023; 
Lulić et al. 2021), experimental testing through shake 
table experiments to observe structural responses (Cui 

2023; Hu et al. 2021), and instrumented structures 
(e.g. buildings and dams) collecting real-time data 
from structures equipped with sensors during seismic 
events (Adamo et al. 2020; Clarkson, Williams, and Sep
pälä 2020; S. Wang et al. 2024).

Empirical studies have demonstrated a strong corre
lation between accumulated vertical displacement, par
ticularly the maximum observed vertical displacement 
at a dam’s crest following seismic events, and IM 
metrics such as PGA and Sa. For example, Nardo, 
Biondi, and Cascone (2024) investigated the San Pietro 
Dam and identified relationships between crest vertical 
displacements and seismic parameters, ultimately devel
oping empirical equations for predicting crest settle
ment. Similarly, De La Paz-Bonilla and Vidot-Vega 
(2017) concentrated on crest settlements at the Carite 
Dam, relating them to Sa.

We developed the empirical PSDM using earthquake 
records from instrumented embankment dams. Accel
eration records from instrumented dam crests were pro
cessed using SeismoSignal (Seismosoft 2024) through a 
two-stage digital signal processing workflow as dis
cussed by Boore and Bommer (2004). From the displa
cement time histories produced, peak and cumulative 
vertical crest displacements were extracted for 

Table 1. Intensity measures considered in the current study, with their physical meaning and application in the context of the dam 
and soil structure.
Category Intensity measure (IM) Notation Physical meaning Application (dam/soil structure)

Amplitude 
Based

Peak Ground 
Acceleration(g)

PGA1 Maximum ground 
acceleration

Common seismic hazard parameter; primary input for pseudo-static 
stability checks and force-based analysis (Papadimitriou, Bouckovalas, 
and Andrianopoulos 2014).

Peak Ground Velocity(m/ 
s)

PGV1 Maximum ground 
velocity

Strongly correlates with liquefaction triggering and velocity-dependent 
embankment deformations and displacements (USACE 2024).

Peak Ground 
Displacement(m)

PGD1 Maximum ground 
displacement

Assesses long-period demands. Indicates residual settlement and 
permanent slope movement (Kramer and Stewart 2024).

Sustained Maximum 
Acceleration(g)

SMA2 Third-largest cyclic 
acceleration peak

Highlights prolonged cyclic accelerations affecting the crest. Represents 
sustained shaking that increases cyclic degradation (Yakut and Yılmaz 
2008).

Sustained Maximum 
Velocity(m/s)

SMV2 Third-largest cyclic 
velocity peak

Evaluates velocity-sensitive deformation. Captures velocity pulses driving 
cumulative displacement (Yakut and Yılmaz 2008).

Root-mean-square of 
Acceleration(g)

ARMS4 Root-mean-square 
acceleration

Represents average shaking intensity; used in random vibration theory 
for demand estimation.

Root-mean-square of 
Velocity (m/s)

VRMS4 Root-mean-square 
velocity

Assesses long-period energy for embankment response. Supports 
displacement/liquefaction correlations.

Root-mean-square of 
Displacement(m)

DRMS4 Root-mean-square 
displacement

Indicates low-frequency and long-wave energy content; relevant for 
large structures.

Effective Design 
Acceleration(g)

EDA6 PGA filtered above ∼8– 
9 Hz

Filters irrelevant high-frequency content for demand estimation. 
Prevents overestimation from instrument noise (Kennedy et al. 1980).

Frequency 
Based

The ratio of PGV to PGA 
(s)

PGV| 
PGA1

Proxy for characteristic 
period (≈T/2π)

Distinguishes between short-period and long-period motions and is a 
key spectral shape parameter (Rathje, Abrahamson, and Bray 1998).

Predominant Period (s) PP1 Period of maximum 
spectral acceleration

Identifies dominant motion frequency; critical for resonance studies with 
the structure’s natural period.

Mean Period (s) MP3 Fourier amplitude- 
weighted mean period

Simplified descriptor of spectral shape and can be used for site 
classification (Rathje, Abrahamson, and Bray 1998).

Energy Based Arias Intensity(m/s) AI5 Cumulative squared 
acceleration content

Measures shaking “energy”; highly effective in predicting cracking, slope 
sliding, and liquefaction potential in earth structures (Reed and 
Kassawara 1990).

Cumulative Absolute 
Velocity(m/s)

CAV1 Time integral of absolute 
acceleration

Used as a cumulative damage index in dam safety assessments for 
distinguishing damaging vs. non-damaging motions (Reed and 
Kassawara 1990).

1Kramer and Stewart (2024); 2Nuttli (1979); 3Rathje, Abrahamson, and Bray (1998); 4Housner and Jennings (1964); 5Arias (1970); 6Benjamin (1988).
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performance-based seismic assessment (Han et al. 2019; 
Priestley and Kowalsky 2000). The seismic performance 
of the embankment dam was assessed using the relative 
crest settlement ratio (RS) as the EDP. Few studies have 
shown a significant correlation between the damage 
state of an earth dam and the RS (Fell et al. 2005; Swais
good 2003). RS is defined as the ratio of the settlement of 
the dam crest to its total height, expressed as a percen
tage (He and Rathje 2024):

RS (%) =
Crest Settlement
Height of Dam

× 100 (3) 

where the dam crest settlement is the displacement of 
the dam crest in the vertical direction, and the dam 
height is the original height of the dam before any 
deformation. For this method, the crest settlement is 
taken as the accumulated vertical displacement. A 
total of 11 instrumented embankment dams were 
affected by 20 earthquake events, sourced from litera
ture and the COSMOS Strong Motion Data Centre, 
which were considered for this method and listed in 
Table 2. Only records with acceleration time histories 
from the dam toe/downstream/base and crest were 
selected. In the following texts, this method will be 
termed as M1.

3.2. Method 2: numerical simulations (FEM 
modelling of dam)

For this method, we utilised a sample embankment dam 
described by Guo, Dias, and Pan (2019), as illustrated in 
Figure 1(a). This dam has a height of 16 metres, with 
both the upstream and downstream slopes designed at 
a ratio of 1:2.6. Table 3 summarises the characteristics 
of the dam body and foundation materials, as detailed 
by Guo, Dias, and Pan (2019). These properties include 
unit weight, effective cohesion, effective friction angle, 
young’s modulus, and poisson’s ratio.

A 2D FEM model of the embankment dam was cre
ated using the QUAKE W module of GeoStudio soft
ware (GEO-SLOPE International Ltd. 2024). Dynamic 
analyses utilised QUAKE W’s nonlinear capabilities 
under 2D plain-strain conditions. The model consists 
of two main elements: the dam body and foundational 
bedrock, as shown in Figure 1(b). The FEM model 
was developed based on material properties listed in 
Table 3, with additional assumptions. To ensure a bal
ance between accuracy and computational efficiency, 
the mesh size was selected to not exceed 1/10 to 1/8 of 
the wavelength for the highest excitation frequency 
(Lysmer and Kuhlemeyer 1969); resulting in mesh 
sizes ranging from 0.5 m to 2 m, we have used a mesh 

size of 2 m as shown in Figure 1(b). The dam and its 
foundation do not vibrate independently under external 
excitation; instead, they behave as a coupled system 
(Burman et al. 2011). Therefore, the interaction between 
the dam and the foundation was considered by model
ling the embankment and foundation together as 
deformable continua within the QUAKE W nonlinear 
dynamic framework (GEO-SLOPE International Ltd. 
2024). These zones were meshed as a bonded conti
nuum so that stress transfer and deformation compat
ibility across the dam–foundation interface were 
captured directly by the FEM formulation (Chakraborty 
and Dey 2024; Guo, Dias, and Pan 2019; He and Rathje 
2024; Khalilzad, Gabr, and Hynes 2015).

Each simulation was conducted in two distinct 
phases. In the initial static phase, the boundary con
strains the horizontal displacements of the foundation’s 
side face and horizontal and vertical movements at the 
base. The FEM dam model was then geostatically 
balanced before dynamic loading. Gravity loading was 
applied and iterated to equilibrium, and the resulting 
in-situ stress and pore-water pressure fields were then 
used to initialise the subsequent nonlinear dynamic 
analysis, ensuring geostatic stress balance and eliminat
ing any spurious initial displacements before dynamic 
loading. Residual nodal displacements and unbalanced 
forces were checked and found to be negligible, allowing 
for a start to the dynamic analysis from a physically 
equilibrated state. In the subsequent dynamic phase, 
the vertical displacements of the foundation’s side face 
and horizontal and vertical movements at the base are 
restricted, and the coupled response of the dam and 
foundation under seismic loading is computed. This 
procedure follows the recommendations of the 
QUAKE W guidelines (GEO-SLOPE International Ltd 
2024) and aligns with recent applications of GeoStudio 
in seismic slope and dam stability analyses (Chakraborty 
and Dey 2024; Hongqiang et al. 2025).

Using a linear elastic model could result in calculated 
stresses in some places that are higher than the strength 
of the soil, which is not realistic considering the charac
teristics of the soil, especially during intense seismic 
activity. For the soil to accurately assess the stress and 
deformation characteristics, a nonlinear constitutive 
model must be implemented, guaranteeing that the 
computed stresses stay within the limits of the soil’s 
strength. To effectively capture the nonlinear response 
of the dam during seismic events, this study utilised 
dynamic effective stress analysis. The hyperbolic back
bone curve, which adheres to the Masing rule (Kramer 
and Stewart 2024), was employed to represent the non
linear stress–strain relationships of the dam materials 
(Hu et al. 2023). This curve is defined by two key 
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parameters: the slope at zero strain, known as the initial 
small-strain shear modulus (Gmax), and the asymptotes 
at large strains (shear strength).

The soil properties within the hyperbolic model are 
relatively straightforward, requiring values for Gmax 
along with the Mohr-Coulomb strength parameters 
(cohesion, c, and angle of internal friction, w). The 
initial Gmax is determined based on effective overburden 
stress in QUAKE W. In this effective stress nonlinear 
model, the damping characteristics of the dam par
ameters are linked to Gmax, as discussed by Ishibashi 

and Zhang (1993) as given in Equation (4).

D = Dmax 1 −
G

Gmax

􏼒 􏼓

(4) 

Dmax is a user-defined value of maximum damping set 
in this study at 0.35, while Gmax denotes the initial 
small-strain shear modulus. This modulus is derived 
from the chosen material property function and the 
initial static effective overburden stress. At the outset 
of the analysis, G is initialised to Gmax, and D is the 

Table 2. Summary of crest displacement and earthquakes recorded on the dam used in method 1 (M1).

Dam HD (m) Earthquake Date

Epicentre

Fault Type
Tectonic  
Setting Df (km) Mw Rhyp (km) S (cm) PGA (g)Lat (°) Long (°)

Anderson 72 Alum rock 2017/10 /10 37.43 −122 Right lateral strike-slip Interplate 9.2 4.1 16.8 0.006 0.004
Loma Prieta 1989/10/18 37.04 −122 Oblique slip reverse Interplate 18 6.9 27 159 0.135
Morgan Hills 1984/04/24 37.31 −122 Right lateral strike-slip Interplate 8 6.2 4.8 40.70 0.423

Carbon Canyon 30 Northridge 1994/01/17 34.21 −119 Blind thrust Intraplate 17.5 6.7 67 54.16 0.195
Whittier Narrows 1987/10/1 34.05 −118 Thrust Intraplate 14.6 5.9 24.7 23.67 0.319

Cayote 50 Redwood Valley 2017/10/13 39.2 −123.2 Right lateral strike-slip Interplate 4 4.2 10.8 0.128 0.037
Del Velle 70 Loma Prieta 1989/10/18 37.04 −122 Oblique slip reverse Interplate 18 6.9 66 248.6 0.055
Long Valley 38.4 Chalfant Valley 1986/07/21 37.58 −118 Right lateral strike-slip Interplate 19 6.4 26.7 8.256 0.096

Toms Place 2020/02/1 37.53 −119 Oblique-slip (transtensional) Interplate 10 4.4 – 0.032 0.05
Martis Creek 34.4 Mohawk valley 2001/08/10 39.8 −120 Right lateral strike-slip Interplate 14 5.4 72 0.013 0.023
Pacoima 113 Chino hills 2008/07/29 33.96 −118 Oblique slip Interplate 14.6 5.4 – 0.006 0.006

Newhall 2011/08/01 34.37 −119 Reverse Intraplate 7.2 4.2 – 0.001 0.005
San Antonio 49 Lake Nacimiento 2009/06/20 39 −123 Oblique-slip thrust Intraplate 6.1 4.6 – 0.004 0.023

Newidria 2012/09/20 36.4 −120.7 Blind thrust Interplate 9.4 5.3 0.043 0.03
Parkfield 2005/06/16 35.9 −120 Right lateral strike-slip Interplate 8.9 3.4 – 0.004 0.028
San Simeon 2003/12/22 35.71 −121 Blind thrust Interplate 7.1 6.5 – 1.378 0.116

Tolt River 61 Duval 1996/05/03 47.77 −122 Strike-slip Intraplate 7 5.1 14.8 1.663 0.183
Nisqually 2001/02/28 47.18 −122.9 Normal Intraplate 52 6.8 111 1.092 0.133

Terminus 78 Ridgecrest 2019/07/06 35.76 −118 Strike-slip Interplate 7 7.1 – 1.049 0.016
Prado 49 Northridge 1994/01/17 34.2 −119 Blind thrust Intraplate 17.5 6.7 85.4 191 0.193

Abbreviations: Lat: Latitude, long: Longitude, HD: Height of dam, Mw: Moment magnitude, Rhyp: Hypocentral Distance, Df: Fault Depth, S: Accumulated vertical 
displacement, PGA: Peak Ground Acceleration.

Figure 1. Geometry for finite element modelling of the embankment dam: (a) Embankment dam geometry with different materials 
represented by distinct colours (adapted from Guo, Dias, and Pan 2019); (b) Schematic view of the model geometry and the corre
sponding finite element mesh employed in the present study.
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damping assigned a minimum value of 0.05 for this 
study. During the dynamic phase, the shear modulus, 
referred to as G, is modelled according to the shear 
modulus degradation function developed by Ishibashi 
and Zhang (1993) in QUAKE W.

A comprehensive series of nonlinear dynamic ana
lyses was performed. Acceleration records from various 
earthquakes were collected from multiple stations; how
ever, due to a lack of detailed information regarding the 
seismic hazard analysis of the dam site, the input 

motion for the model was derived from an earthquake 
database, specifically selecting records with a PGA ≥ 
0.05 g. The magnitudes of the earthquakes chosen var
ied from moment magnitude (Mw) of 5.1 to 7.6, ensur
ing the inclusion of a range of fault mechanisms and 
tectonic settings to address all potential types of earth
quake sources. Horizontal ground motions were applied 
at the base of the model, utilising a total of thirty free- 
field earthquake records from seven distinct earthquakes, 
along with nine records from eight stations situated on 
the embankment dam sites. A summary of the input 
motions used is presented in Table 4, and Figure 2 pre
sents the response spectrum of all input ground motions. 
Throughout the analyses, vertical displacement was cal
culated, with results documented for key nodes located 
at the dam’s crest. The seismic response was evaluated 
based on the maximum vertical displacement recorded 
at the crest. Figure 3 illustrates an example of the vertical 

Table 3. Soil parameters for the studied embankment dam 
(After Guo, Dias, and Pan 2019).
Parameters Dam body (backfill) Foundation

Effective cohesion (kPa) 8.9 100
Effective friction angle (°) 34.8 34.1
Unit weight (kN/m3) 20 18
Young modulus (MPa) 100 600
Poisson’s ratio (µ) 0.3 0.25

Table 4. Earthquake records used in Method 2 (M2) for FEM modelling.
Station location Earthquake Date Fault type Tectonic setting Df (km) Mw No of records

Free Field Chichi 1999/09/20 Thrust Interplate 8 7.7 15
Kobe 1995/01/16 Right lateral strike-slip Intraplate 17.6 7.3 7
Imperial Valley 1979/10/15 Right lateral strike-slip Interplate 10 6.4 1
Kozani-Grevena 1995/05/15 Normal Intraplate 14 6.6 2
Loma Prieta 1989/10/17 Oblique slip reverse Interplate 18 6.9 2
Manjil-Rudbar 1990/06/20 Left lateral strike slip Intraplate 15 7.4 1
Westmorland 1981/04/26 Strike-slip Interplate 10 5.9 2

Anderson Dam Morgan Hills 1984/04/24 Right lateral strike-slip Interplate 8 6.2 1
Loma Prieta 1989/10/18 Oblique slip reverse Interplate 18 6.9 1

Carbon Canyon Dam Whittier Narrows 1987/10/1 Thrust Intraplate 14.6 5.9 1
Long Valley Dam Chalfant Valley 1986/07/21 Right lateral strike-slip Interplate 19 6.4 1
Parado Dam Northridge 1994/01/17 Blind thrust fault Intraplate 17..5 6.7 1
Seven Oaks Dam SanBrendo 2009/01/08 Right lateral strike-slip Interplate 13.8 4.5 1
San Antonio Dam San Simeon 2003/12/22 Blind Thrust fault Interplate 7.1 6.5 1
Sant Felica Dam Northridge 1994/01/17 Blind thrust fault Intraplate 17.5 6.7 1
Tolt River Dam Duval 1996/05/03 Strike-slip faulting Intraplate 7 5.1 1

Abbreviations: Mw: Moment Magnitude, Df: Fault Depth.

Figure 2. Response acceleration of all considered input ground motions, where the red line denotes the mean response acceleration.
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displacement contour obtained from FEM modelling. 
For this method also, RS is calculated using the Equation 
(3), but in this method, the crest settlement is taken as the 
vertical displacement of the dam crest computed from 
the FEM analysis. Following this, the IM-EDP relation 
is developed using PSDMs. Method 2 will be referred 
to as M2 in the following text.

3.2.1. Validation of the numerical model
The numerical model is based on geometry and material 
properties of a real-world dam project as discussed by 
Guo, Dias, and Pan (2019), post-earthquake settlement 
data for the reference dam were not available, making 
direct empirical calibration infeasible, so the FEM 
model was validated against 19 documented case his
tories of medium-sized embankment dams subjected 
to similar PGA levels as reported by Swaisgood 
(2003). Figure 4 illustrates that the model accurately 

reproduces the observed trend of increasing crest settle
ment with increasing PGA. Agreement with case his
tories was quantified using RMSE and mean bias 
(RMSE = 0.051 m, bias = −0.012 m), indicating that 
the model reproduces observed behaviour with reason
able accuracy. This suggests that FEM results are con
sistent with observed performance trends, supporting 
the credibility of the PSDM and fragility curves.

4. Evaluation parameters

This section provides an overview of the evaluation of 
IMs, emphasising their effectiveness in predicting EDP. 
With 14 IMs under consideration, the analysis aims to 
identify the most appropriate IM for EDP prediction 
for embankment dams, considering the M1 and M2 
based PSDMs. To determine the optimal IM for embank
ment dams, five steps are taken: (1) 21 earthquake 

Figure 3. Example of a vertical displacement contour obtained from finite element (FEM) modelling. The contour illustrates the 
distribution of vertical settlements across the embankment and foundation.

Figure 4. Comparison of crest settlement from the current study with case studies of embankment dams having medium height and 
subjected to comparable PGA levels as listed by Swaisgood (2003).
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records from 11 instrumented embankment dams are 
selected for empirical analysis (Section 3.1), along with 
39 ground motions for numerical simulation (Section 
3.2); (2) the acceleration records of these instrumented 
dams are utilised to assess the accumulated vertical dis
placement (Section 3.1), and the selected ground motions 
are input into the developed numerical model to conduct 
dynamic analysis (Section 3.2); (3) 14 IMs extracted from 
Step (1) and EDPs obtained from Step (2) are employed 
for empirical and numerical simulation approaches, 
respectively, to establish empirical data-based and 
numerical simulation data-based PSDMs (Section 3); 
(4) three commonly used metrics for IM evaluation are 
applied, calculating coefficients for each metric based 
on both PSDMs: efficiency (Ciampoli and Giovenale 
2004), which quantifies the uncertainty of PSDMs 

(Section 4.1); practicability (Mackie and Stojadinović 
2001), which reflects the correlation between IMs and 
EDPs (Section 4.2); and proficiency (Padgett, Nielson, 
and DesRoches 2007), which addresses the trade-off 
between efficiency and practicality (Section 4.3); (5) 
finally, the coefficients are utilised in the fuzzy compre
hensive evaluation method detailed in Section 5 to quan
titatively select the optimal IM. The general proposed 
procedure for optimal IM selection is summarised in 
Figure 5.

4.1. Efficiency

Efficiency refers to an IM’s capacity to predict the corre
sponding EDP consistently with minimal variability 
(Ciampoli and Giovenale 2004). In the context of 

Figure 5. Schematic representation of the proposed framework for evaluating optimal intensity measures (IMs) for embankment 
dams.
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seismic performance assessment, an efficient IM 
demonstrates a robust and stable correlation with the 
EDP across diverse ground motions, thereby minimis
ing uncertainty in predicting structural responses. Typi
cally, efficiency is assessed using statistical indicators 
such as the standard deviation of residuals (sEDP|IM), 
the coefficient of determination (R²), root mean square 
error (RMSE), and the correlation coefficient (r).

4.1.1. Correlation coefficients
Pearson correlation coefficients, as discussed by Pinzón 
et al. (2023), were used here to assess the correlation 
between the IMs and EDPs. The Pearson coefficient 
measures the linear relationship between two variables. 
The Pearson correlation coefficient “r” is defined as the 
covariance of the two variables divided by the product of 
their standard deviations σ and is given by Equation (5).

r =
Cov(ln (xj), ln (y))

sln (xj)sln (y)
(5) 

where ln (xj) and ln (y) are the natural logarithms of the 
IM and EDP values, respectively. The term Cov (ln (xj), 
ln (y)) represents the covariance between the two logar
ithmic variables, while sln (xj) and sln (y) are their corre
sponding standard deviations. A correlation coefficient 
value close to 1 indicates a strong positive correlation, 

while a value nearing −1 signifies a strong negative cor
relation. A coefficient of zero implies no correlation at 
all.

Figure 6(a) shows that in the Pearson correlation 
model, PGV, VRMS, AI, CAV, and SMV demonstrate 
the strongest correlation with the EDP in M1 and M2. 
As a result, PGV, VRMS, AI, CAV, and SMV are the 
IMs having the best correlation with EDP.

4.1.2. Goodness of fit
The goodness of fit is a widely recognised and effective 
metric for evaluating data fitting. The linear regression 
coefficient (R²) serves as the primary measure of good
ness of fit, indicating the extent of deviation between the 
observed data and the fitted regression line. These 
regression coefficient values range from 0 to 1, with 
values closer to 1 reflecting a more accurate represen
tation of the data trend and reduced scatter.

A goodness-of-fit value approaching one indicates a 
stronger correlation between the IM and the EDP. As 
illustrated in Figure 6(b), the PGV achieved the highest 
R² values of 0.90 for M1 and M2. This was followed by 
the SMV and the VRMS, which recorded R² values of 
0.90 and 0.89 and 0.94 and 0.72 for M1 and M2, respect
ively. The AI also performed well, with R² values of 0.86 
and 0.81 for M1 and M2. Additionally, the CAV 

Figure 6. Comparison of: (a) correlation coefficients (r); (b) coefficients of determination (R²); (c) root-mean-square errors (RMSE); and 
(d) dispersion (sEDP|IM) for each Intensity Measure (IM) obtained using Method 1 (M1) and Method 2 (M2).
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demonstrated strong performance with R² values of 0.85 
and 0.81 for M1 and M2, respectively. In contrast, PGA, 
PP, MP, EDA, and PGV|PGA exhibited relatively lower 
R² values. Hence, the PGV, SMV, VRMS, AI, and CAV 
are better IMs than the others in terms of goodness of 
fit.

4.1.3. Root Mean Square Error (RMSE)
Root Mean Square Error (RMSE) is a key metric used to 
evaluate the predictive capability of IMs in estimating 
the corresponding EDPs. It measures the average mag
nitude of the prediction error, providing a direct assess
ment of how closely the predicted EDP values (obtained 
through regression analysis) from PSDMs obtained 
from M1 and M2 match the actual observed values. 
RMSE is calculated using Equation (6).

RMSE =

����������������
1
n

􏽘n

i=1
(yi − 􏽢yi)

2

􏽳

(6) 

where yi is the observed EDP value,  􏽢yi is the predicted 
EDP value from the model, and n is the number of data 
points. A lower RMSE implies a more accurate and 
reliable IM, suggesting smaller deviations between 
observed and predicted EDPs. From Figure 6(c), we 
can see that VRMS has the lowest RMSE (0.73), fol
lowed by PGV|PGA (0.97), and SMV (1), while PGA 
has the highest RMSE (1.32) from M1. Similarly, AI 
has the lowest RMSE (0.012), followed by PGV (0.016) 
and SMA (0.016), while DRMS has the highest RMSE 
(0.029) from M2.

4.1.4. Standard deviation of residuals (dispersion)
An efficient IM reduces the variation and dispersion of 
seismic demand predictions for a given ground motion 
(Ciampoli and Giovenale 2004). M1 and M2 PSDMs are 
employed to evaluate IM efficiency through the stan
dard deviation (sEDP|IM), expressed in Equation (7).

sEDP|IM =

�������������������������������������􏽐
(ln EDPactual − ln EDP predicted)2

N − 2

􏽲

(7) 

where N is the total number of observations for a par
ticular category of sEDP|IM , EDPactual is the actual value 
of EDP from the dataset, and EDPpredicted is the value 
obtained from the fitted curve after putting in the IM 
value. Efficiency is inversely related to the standard 
deviation (sEDP|IM),a lower efficiency corresponds to a 
higher standard deviation. The dispersion of various 
IMs is calculated using Equation (7). A lower value of 
sEDP|IM indicates a more effective IM, whereas higher 
values signify reduced efficiency.

As shown in Figure 6(d), PGV has the lowest dis
persion, with sEDP|IM values of 1.39 and 0.49 for M2 

and M1, respectively. Following PGV, SMV (sEDP|IM =  
1.43 and 0.51 from M1 and M2 respectively), VRMS 
(sEDP|IM = 1.07 and 0.80 from M1 and M2 respectively). 
AI ( sEDP|IM = 1.8 and 0.53 from M1 and M2) and CAV 
( sEDP|IM = 1.67 and 0.65 from M1 and M2 respectively) 
exhibit notable lower dispersion. In contrast, the highest 
sEDP|IM is observed for the PP (sEDP|IM =  3.28 and 1.23 
from M1 and M2), indicating that this IM has the highest 
dispersion. This is followed by EDA (sEDP|IM = 2.43 and 
1.47 from M1 and M2), PGV|PGA (sEDP|IM = 3.01 and 
1.09 from M1 and M2), and MP (sEDP|IM =  3.1 and 
1.07 from M1 and M2).

In summary, the optimal ranking of IMs for 
efficiency, based on r, RMSE, R2, and sEDP|IM consist
ently identifies PGV, SMV, VRMS, CAV, and AI as 
the most efficient choices for embankment dams.

4.2. Practicality

The practicality criterion directly links the IM and the 
resulting EDP. When deemed impractical, the EDP 
shows little to no relationship with the seismic IM mag
nitude. An IM-EDP relationship is seen as practical if it 
can be easily constructed from available ground motion 
IM and nonlinear analysis response values and if it 
makes sense from an engineering perspective (Ciampoli 
and Giovenale 2004; Mackie and Stojadinović 2001).

The practicality of an IM is assessed using the coeffi
cient (b), which represents the slope of the regression 
line, as illustrated in Equation (2). A lower (b) value 
indicates that the IM has a minimal impact on seismic 
demand estimation, suggesting impracticality. In con
trast, a higher (b) value signifies a more practical IM. 
Figure 7(a) demonstrates the practicality of various 
IMs. SMA measure achieved the highest (b) values of 
2.47 and 1.9 for M1 and M2, respectively, establishing 
it as the most practical IM. Additionally, PGA and 
PGV|PGA showed significant practicality, with (b) 
values of 2.57 and 1.84 and 5 and 1.5 for M1 and M2, 
respectively. CAV (2.30 and 1.33 from M1 and M2), 
PGV (2.5 and 1.29), and SMV (2.15 and 1.32) also 
demonstrated considerable practicality. In contrast, 
DRMS exhibited the lowest coefficient (b) values of 
1.11 and 0.31 for M1 and M2, indicating impracticality. 
Other IMs with lower practicality include PGD, which 
had (b) values of 1.26 and 0.46 from M1 and M2.

4.3. Proficiency

Proficiency is a criterion that benefits from the simul
taneous consideration of efficiency and practicality 
(Ciampoli and Giovenale 2004; Padgett, Nielson, and 
DesRoches 2007). A more proficient IM exhibits 
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reduced, modified dispersion, which underscores the 
extent of demand uncertainty linked to the choice of 
IM. Modified dispersion (ξ), derived from Equation 
(8), defines proficiency.

j =
sEDP|IM

b (8) 

A low value of ξ signifies a more effective IM. The profi
ciencies of the IMs, reflected in lower ξ values, are illus
trated in Figure 7(b). Upon examining the IMs for ξ, it is 
evident that PGV exhibits the lowest value among the 
other IMs, with ξ values of 0.56 and 0.38 for M1 and 
M2, respectively. Other IMs with notably low modified 
dispersion values include SMV (ξ = 0.66 and 0.38 from 
M1 and M2), CAV (ξ = 0.72 and 0.49 from M1 and 
M2), and VRMS (ξ = 0.53 and 0.70 from M1 and M2). 
Furthermore, the analysis reveals that DRMS has the 
highest modified dispersion (ξ = 1.48 and 4.49 from 
M1 and M2), followed by EDA (ξ = 0.94 and 6.74 from 
M1 and M2) and PGD (ξ = 0.75 and 2.87 from M1 and 
M2). Based on the findings regarding optimal IM selec
tion criteria, it is highlighted that PGV, SMV, VRMS, 

CAV, and SMA have the highest proficiency. In con
trast, PGA, PGV|PGA, ARMS, AI, and PGD moderately 
correlate with the EDP. Conversely, DRMS, EDA, PP, 
and PGV|PGA demonstrate the least proficiency.

Based on the three evaluation parameters leading to 
six evaluation metrics as discussed above, the top five 
IMs from M1 are presented in Table 5, while those 
from M2 are shown in Table 6. The data clearly shows 
notable differences in IM rankings across the six evalu
ation metrics. From Table 5, it is evident that VRMS, 

Figure 7. Comparison of: (a) b values for each Intensity Measure (IM) under the practicality criterion; (b) ξ values for each Intensity 
Measure (IM) under the proficiency criterion, obtained using Method 1 (M1) and Method 2 (M2).

Table 5. Ranking of intensity measures (IMs) according to 
evaluation parameters for Method 1 (M1) (Common IM given 
in bold).

Evaluation 
parameters Metrics

Rank

1 2 3 4 5

Efficiency r SMV PGV VRMS CAV AI
R2 PGD DRMS VRMS PGV SMV

RMSE VRMS PGV| 
PGA

SMV PP PGV

sEDP|IM PGD DRMS VRMS PGV SMV
Practicality b MP PP EDA PGA PGV
Proficiency j MP VRMS PGV PP SMV
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PGV, and SMV occurred in the top five IMs in efficiency 
evaluation metrics, but the rank of these IMs is not con
sistent across metrics (r, RMSE, R2, and sEDP|IM). Fur
thermore, in practicality evaluation (b), only PGV 
occurs in the top five, whereas in proficiency evaluation 
(ξ), VRMS, PGV, and SMV are again occurring, but 
their order is not consistent. Similarly, Table 6 shows 
that PGV, SMV, AI, CAV, and VRMS are the IMs 
that occur in the top five IMs in efficiency evaluations 
(r, RMSE, R2, and sEDP|IM) but the ranking of these 
IMs is not consistent in the practicality (b) and profi
ciency evaluations (ξ). Notably, a specific IM did not 
achieve a consistent ranking across all parameters, high
lighting the necessity of establishing a methodology that 
can quantitatively integrate and standardise IM per
formance across different criteria. As a result, we 
devised a fuzzy comprehensive evaluation framework 
aimed at quantitatively identifying the optimal IMs, 
enabling a detailed exploration of the seismic fragility 
of embankment dams.

5. Proposed fuzzy evaluation framework for 
ranking intensity measures

The fuzzy comprehensive evaluation method, based 
on the theory of fuzzy relation synthesis, converts 
qualitative factors into quantitative metrics for a 
thorough evaluation. This technique has been widely 
utilised in both risk assessment and decision-making 
procedures (Tang et al. 2022; Wang, Shafieezadeh, 
and Ye 2017; Zhang et al. 2024). We use the fuzzy 
comprehensive evaluation approach to quantitatively 
consolidate and balance the performance of IMs 
across different criteria, allowing for the identification 
of the most appropriate IM for Embankment Dams. 
The methodology comprises a combination of per
formance metric calculations (described in Section 4) 
and fuzzy logic-based aggregation to produce a single 
score that indicates the overall effectiveness of each 
IM. The comprehensive evaluation process applied 
in this method is illustrated in Figure 8. The 

procedure for identifying the optimal IM using the 
fuzzy comprehensive evaluation technique includes:

Step 1: Construction of Factor set and Evaluation 
set

In the initial phase of evaluating IMs, it is essential to 
identify and define the relevant evaluation criteria, col
lectively referred to as the factor set. This factor set 
encompasses all the attributes that contribute to the 
overall assessment of IM performance (Tan, Lu, and 
Zhang 2016; Xin et al. 2021). Formally, the factor set 
is represented as:

U = [U1, U2, . . . , Um] (9) 

where Ui denotes the ith evaluation factor and m is the 
total number of factors considered. For improved inter
pretability and structured evaluation, the factors are 
organised hierarchically into two levels: 

(1) The primary factor set U1, which contains high- 
level qualitative criteria capturing the key dimen
sions of IM performance, is expressed as:

U1 = [U11 , U12 , U13]
= [Efficiency, Proficiency, Practicality]

(10) 

(2) The secondary factor set U2, which consists of cor
responding quantitative metrics that characterise 
each primary criterion more precisely derived and 
discussed in section 4 and is shown in Equation 
(11).

U2 = [U21 , U22 , U23, U24, U25, U26]
= [sEDP|IM , R2 , RMSE, r, j, b]

(11) 

The evaluation set, V, reflects the outcomes consider
ing the advantages and disadvantages of each evaluation 
factor:

V = [V1, V2, · · · , Vm] (12) 

where Vi represents a potential comprehensive evalu
ation outcome. As this study only requires calculating 
the relative rankings among IMs and not classifying 
them into distinct levels, the evaluation set is replaced 
by the rankings among IMs.

Step 2: Construction of the Fuzzy Relation Matrix
To quantitatively express the degree to which each 

IM satisfies the evaluation criteria, a fuzzy relation 
matrix is constructed. Each element rij of this matrix 
represents the normalised membership degree of the 
jth IM concerning the ith evaluation factor. Normalisa
tion is achieved using the sum-normalisation method 
(Tang et al. 2022) in which each raw factor value xij is 

Table 6. Ranking of intensity measures (IMs) according to 
evaluation parameters for Method 2 (M2) (Common IM given 
in bold).

Evaluation parameters Metrics

Rank

1 2 3 4 5

Efficiency r PGV SMV AI CAV VRMS
R2 PGV SMV AI CAV VRMS

RMSE AI PGV SMA CAV SMV
sEDP|IM PGV SMV AI CAV VRMS

Practicality b SMA PGA ARMS MP CAV
Proficiency j PGV SMV SMA ARMS CAV
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divided by the total of that factor across all IMs:

rij =
xij

􏽐n
j=1 xij

, i = 1, . . . , m ; j = 1, . . . , n (13) 

Where xij is the raw value of the ith evaluation factor for the 
jth IM, m is the number of factors, and n is the number of 
IMs. For factors where, lower values indicate better per
formance (inverse relationship), such as sEDP|IM, RMSE, 
and ξ, the membership degree is transformed using 
Equation (14) to its complement to maintain a consistent 
membership scale where higher values indicate better per
formance, for inverse factors i ∈ {sEDP|IM, RMSE, ξ}.

rc
ij = 1 −

xij
􏽐n

j=1 xij
, i = 1, . . . , m ; j = 1, . . . , n

(14) 

where xij is the member that requires processing by the 
complement operation method. This formulation ensures 
that the normalised values for each metric sum to unity, 

preserves relative magnitudes, and yields values bounded 
by [0, 1] when xij ≥ 0 for ith evaluation factor (Hwang and 
Yoon 1981; Tang et al. 2022). Sum-normalisation was 
employed instead of z-score or min–max scaling, as it 
avoids the extreme rescaling associated with dependence 
on a single minimum or maximum value, maintains pro
portional relationships among the original scores, and 
provides bounded membership degrees suitable for 
fuzzy aggregation and weighted combination (Hwang 
and Yoon 1981; Tang et al. 2022). This normalisation 
method has also been widely implemented in previous 
studies (Tang et al. 2022; Zhang et al. 2024). The resulting 
fuzzy relation matrix aggregates these membership 
degrees:

R = [rij] =

r11 r12 · · · r1n
r21 r22 . . . r2n

..

. ..
. . .

. ..
.

r61 r62 . . . r6n

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦ (15) 

Figure 8. Flowchart of the proposed fuzzy evaluation method for ranking Intensity Measures (IMs).
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Step 3: Determination of Weight Vector
The weight vector W describes the significance of 

each evaluation factor. Assigning appropriate weights 
to the evaluation factors reflects their relative impor
tance in the final assessment.

W = [w1, w2 . . . , wm] (16) 

where wi represents the degree of membership for 
each evaluation factor within U. The weight vectors 
W1 and W2 correspond to the primary factor set 
(U1) and the secondary factor set (U2), respectively. 
For the primary factor set U1, the assigned weights 
are W1 = [0.50, 0.25, 0.25]. Among the three criteria, 
efficiency is given the highest weight (0.50), while 
practicality and proficiency share equal weights 
(0.25 each). This weighting reflects the established 
consensus that efficiency is the most critical factor 
in defining IM–EDP relationships, as it reduces the 
dispersion (sEDP|IM) of EDP predictions (Aquib, 
Sivasubramonian, and Martin Mai 2022; Giovenale, 
Allin Cornell, and Esteva 2004; Luco and Allin Cor
nell 2007; Vargas-Alzate, Hurtado, and Pujades 
2021). At the same time, practicality and proficiency 
are also integral to IM selection. Notably, since 
proficiency inherently incorporates aspects of both 
efficiency and practicality (Equation 8), prioritising 
efficiency indirectly enhances proficiency without 
requiring disproportionate emphasis (Khosravikia 
and Clayton 2019). Accordingly, the chosen weight 
W1 = (0.50, 0.25, 0.25) provides a balanced evalu
ation in which efficiency receives twice the weight 
of the other two criteria, while all three factors retain 
meaningful representation in the overall assessment.

For the secondary factor set U2, weights are assigned 
to the individual metrics, W2 = [0.125,0.125,0. 
125,0.125,0.25,0.25]. Further W2 was divided into sub- 
vectors corresponding to each primary factor, W2,eff =

[w1, w2, w3, w4] = [0.125, 0.125, 0.125, 0.125]; W2,prac 
= [w5] = [0.25]; W2,prof = [w6] = [0.25] respectively 
for efficiency, practicality, and proficiency metrics.

Step 4: Aggregation and Final Fuzzy Scores

5.1. Aggregation of secondary factors into 
primary factors

To reconcile the secondary factors with the primary 
qualitative criteria, the secondary factors are aggregated 
by weighted summation. Specifically, for each jth IM, the 
membership degree for each primary factor is computed 

as follows:

r(E)
j =

􏽐4

k=1
W2,eff · rkj, Efficiency

r(P)
j =W2,prac · r5j , Practicality
r(Pf )

j =W2,prof · r6j , Proficiency

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(17) 

where r(E)
j , r(P)

j , r(Pf )
j is aggregated efficiency, practicality 

and proficiency score for jth IM respectively.w2k is 
weight for the kth secondary metric. rkj is normalised 
score of jth IM on secondary factor k. This yields the pri
mary factor membership matrix as shown in Equation 
(18).

R primary =

r(E)
1 r(E)

2 · · · r(E)
n

r(P)
1 r(P)

2 . . . r(P)
n

r(Pf )
1 r(Pf )

2 · · · r(Pf )
n

⎡

⎢
⎣

⎤

⎥
⎦ (18) 

5.2. Final fuzzy scores and optimal IM selection

The ultimate fuzzy evaluation score for each IM is 
obtained by the weighted summation of the primary fac
tor memberships with the corresponding weights (Xue 
and Yang 2014):

B = W◦1 R primary = W◦1

r(E)
1 r(E)

2 · · · r(E)
n

r(P)
1 r(P)

2 . . . r(P)
n

r(Pf )
1 r(Pf )

2 · · · r(Pf )
n

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

= [b1, b2, · · · , bn]
(19) 

where ○ symbolises the fuzzy operations, and bi is the 
degree of membership associated with each evaluation 
criterion. The score bj represents the comprehensive 
fuzzy evaluation for the jth IM and is given by Equation 
(20).

bj =
􏽐3

i=1
W1ir(i)

j = 0.5r(E)
j + 0.25r(P)

j + 0.25r(Pf )
j (20) 

where bj is the final aggregated score for the jth IM. In 
this study, IM rankings are determined by the principle 
of the maximum membership degree, denoted as bmax, 
the optimal IM is identified by selecting the one with 
the maximum fuzzy score, signifying it as the most 
efficient, proficient, and practical predictor of the EDP.

bmax = max
1≤j≤n

bj (21) 

Optimal IM = Vk, where bk = bmax (22) 

where bmax is the maximum final score across all IMs, 
the IM, Vk corresponding to this score is selected as 
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the optimal IM. The comprehensive evaluation results 
for the maximum bmax related to the optimal IM, with 
RS as the EDP, are summarised in Figure 9. The top 
two IMs identified from M1 are VRMS and PGV 
which have bmax values of 0.1927 and 0.1909, respect
ively. In contrast, the top 2 IMs from M2 include PGV 
and SMV with bmax values of 0.1983 and 0.1979 respect
ively. Notably, PGV appears in the top two for both 
methods, while VRMS is exclusive to M1. Consequently, 
for embankment dams, PGV and VRMS have been 
selected as the optimal IMs if we take M1 and M2 com
bined. According to Giovenale, Allin Cornell, and Esteva 
(2004), “hazard computability” refers to the ability to 
compute seismic risk using current ground motion 
attenuation relationships. Among the top two optimal 
IMs (VRMS and PGV from M1 and PGV and SMV 
from M2) obtained in this study, only the attenuation 
model for PGV has been developed (Bahrampouri, 
Rodriguez-Marek, and Green 2020; Danciu and Tselentis 
2007; Tao et al. 2024), allowing for calculations at specific 
sites and meeting the criteria for hazard computability.

5.3. Sensitivity analysis of primary factor weights

To evaluate the robustness of IM rankings with respect 
to variability in the primary factor weights (W1), a 
Monte Carlo (MC) sensitivity analysis was performed 
(Broekhuizen et al. 2015; Mazurek and Strzałka 2022; 
Więckowski and Sałabun 2023). This analysis quantifies 
how perturbations in the primary weight vector W1  =  

[0.5,0.25,0.25] affect the fuzzy comprehensive scores bj 
(Equation 20) and, consequently, the ordinal ranking 
of IMs under both PSDM methods.

The baseline weight vector is defined as W1
base = [0.5, 

0.25, 0.25], in which w1
base = 0.5 corresponds to 

efficiency, w2
base  =  0.25 to practicality, and w3

base = 0.25 
to proficiency. For each MC trial t = 1, … , N and each 
factor k = 1,2,3, an independent standard normal vari
able is drawn as shown in Equation (23).

et,k ≏ N(0, 1) (23) 

where ɛt,k represents the gaussian noise term associated 
with factor k in trial t. These samples are used to gener
ate multiplicative lognormal perturbations given in 
Equation (24).

ht,k = e(sln·et,k), loght,k ≏ N(0, s2
ln) (24) 

where ηt,k is the multiplicative noise factor applied to 
the baseline weight wk

base and σln is the standard devi
ation controlling the typical magnitude of the pertur
bation (Mazurek and Strzałka 2022). The lognormal 
perturbation ensures strictly positive weights and multi
plicative variation, which is more realistic than additive 
noise, as negative weights are not meaningful (Limpert, 
Stahel, and Abbt 2001; Mazurek and Strzałka 2022). The 
unnormalised perturbed weights are:

ŵt,k = wbase
k · ht,k (25) 

where ŵt,k is the perturbed weight for factor k in trial t 
before normalisation. The normalised perturbed weight 

Figure 9. Comparison of fuzzy score (bmax) values for 14 intensity measures (IMs) obtained using Method 1 (M1) and Method 2 (M2). 
Blue bars represent M1 results, and green bars represent M2 results. The figure highlights the highest-ranked (Rank 1) and second- 
highest-ranked (Rank 2) IMs for each method based on their bmax values.
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vector is obtained as:

w∗t,k =
ŵt,k

􏽐K
m=1 ŵt,m

=
wbase

k · ht,k
􏽐K

m=1 wbase
m · ht,m

(26) 

where w∗t,k is the normalised perturbed weight for factor 
k, and K = 3 is the total number of primary factors. For 
each trial t, the perturbed weights W1

(t) = [ v∗eff ,t, v
∗
prac,t , 

v∗prof ,t] were substituted into Equation (20) to obtain 
new fuzzy scores for each IM:

b(t)
j = v∗eff ,tr

(E)
j + v∗prac,t r(P)

j + v∗prof ,t r(Pf )
j (27) 

where, b(t)
j is the fuzzy comprehensive score of IMj in 

trial t; r(E)
j , r(P)

j , r(Pf )
j are the efficiency, practicality, and 

proficiency scores for IMj. IMs were ranked in descend
ing order of bj

(t) to obtain the perturbed rank vector rt.
The robustness of IM rankings under perturbed pri

mary weights is quantified using complementary 
metrics. For each trial t, the mean absolute rank change 
(Δt) is calculated as:

△t =
1
M

􏽘M

j=1
|rt,j − rbase

j | (28) 

where, rt,j is the rank of IMj in trial t, rbase
j is the baseline 

rank of IMj, and M is the total number of IMs. In 
addition, the Spearman correlation (ρt

S) between the 
baseline rank vector (rbase) and the perturbed rank vec
tor (rt) was also computed:

rS
t = corrSpearman(rbase, rt) (29) 

where rS
t ∈ [−1,1]; values closer to 1 indicate that the 

relative ordering of IMs is largely preserved. Higher 
values of ρt

S indicate that the relative ordering of IMs 
is largely preserved under W1 perturbations. A visual 
summary of rank variability is presented through rank 
heat maps. In these maps, row i corresponds to IMi, col
umn j corresponds to rank j, and the colour intensity 
represents the number of MC trials in which IMi 
received rank j. Formally, the rank frequency matrix F 
is defined as:

Fi,j =
􏽐N

t=1
1{rt,i = j} (30) 

where Fi,j is the frequency of IMi attaining rank j, 1{⋅} is 
the indicator function, and N is the total number of MC 
trials. IMs with highly concentrated distributions indi
cate stable rankings, while spread-out distributions 
indicate higher uncertainty. The 5th, 50th (median), 
and 95th percentile ranks computed for each IM provide 
an additional quantitative measure of rank uncertainty 
(Broekhuizen et al. 2015; Więckowski and Sałabun 

2023).

r j,(p) = Quantilep{rt,j}N
t=1 , p = 5%, 50%, 95% (31) 

where rj,(p) is the rank of IMj corresponding to the pth 

percentile across all MC trials.
The sensitivity analysis was conducted with N =  

10,000 MC trials. The results for the baseline case, cor
responding to σln = 0.15 (≈ ± 15% variability), are 
shown here. In M1, △t was 0.557, and a rS

t was 0.969 
(median 0.978). IM-specific results show that VRMS 
remained the top-ranked IM with low variability. For 
M2, the results indicate even higher robustness, with 
△t of 0.148 and a rS

t of 0.991 (median 1). IM-specific 
results show that PGV remained the top-ranked IM 
with low variability.

Figure 10 illustrates the average absolute change in 
fuzzy comprehensive scores resulting from pertur
bation; both PSDM methods showed a very small 
change in fuzzy scores (≈ 0.0056–0.0069). In M1, the 
largest change (∼0.0069) occurs for DRMS, followed 
by PGD and VRMS, while MP shows the smallest 
(∼0.0056). In M2, the largest change (∼0.007) is 
observed for AI, followed by SMV and PGV, while 
MP has the smallest change (∼0.0062). The correspond
ing rank-frequency heatmaps in Figure 11.

The 5th–95th percentile rank intervals in Figure 12
further corroborates this stability. In M1 most IMs 
vary by fewer than two rank positions. Top-ranked IM 
VRMS has a median rank of 1. IMs such as PGA, AI, 
and SMV display narrow uncertainty bands, whereas 
DRMS, PP, MP and PGV|PGA exhibit slightly wider 
intervals of 4–6 ranks. In M2 again, IM yields more 
compact intervals, with top rank IM PGV having a 
median rank of 1, whereas PGA, ARMS, AI, and SMA 
exhibit slightly wider intervals of 3–4 ranks. Hence, 
the top-ranked IMs (VRMS from M1 and PGV from 
M2) found relatively insensitive to changes in W1.

To examine the influence of stronger perturbations, 
σln was increased incrementally from 0.10 to 0.50. In 
Figure 13, as expected, larger perturbations resulted in 
slightly higher △t and lower rS

t . In M1, △t rose from 
≈ 0.40 to ≈ 1, while rS

t decreased from ≈ 0.98 to ≈ 
0.86. In M2, the △t remained smaller (≈ 0.06 to 1) 
and rS

t changes only slightly (≈ 0.995 to 0.965). Even 
at the highest perturbation level (σln  =  0.50), rS

t 
remained above 0.85, indicating strong preservation of 
relative rank order. This indicates that IM rankings 
remain largely unaffected by approximately ±10–50 % 
variations in the W1, thereby demonstrating the robust
ness of the ranking framework and its ability to consist
ently preserve the relative ordering of IMs (Limpert, 
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Stahel, and Abbt 2001; Saltelli et al. 2008; Więckowski 
and Sałabun 2023).

6. Seismic fragility analysis

Fragility curves provide a quantitative approach to 
rapidly assess a structure’s seismic response. These 
curves give the likelihood of dams exceeding a specific 
damage state in response to a given level of ground 
shaking, influenced by IMs such as PGA or Sa (Hur
tado-López and Mayoral-Villa 2019; Rathje and He 
2022; Saeidi et al. 2019; Zentner et al. 2011). Conducting 
a seismic fragility assessment is crucial for evaluating 
the vulnerability of embankment dams subjected to 
earthquake loading. This approach follows a probabilis
tic framework, integrating PSDMs and damage state 
(DS) thresholds to generate fragility curves that quantify 

the probability of exceeding different DS levels for vary
ing IMs. The methodology adopted here is consistent 
with established procedures in recent fragility studies 
(Khalid et al. 2023; Rathje and He 2022).

6.1. Fragility function

The fragility function expresses the probability that the 
EDP exceeds a specified DS threshold for a given IM. It 
is commonly formulated in the EDP domain as in 
Equation (32) (Khalid et al. 2023; Rathje and He 2022).

P(EDP ≥ DS|IM) = 1 − F
ln (DS) − (ln a+ b ln IM)

���������������
s2

ln EDP + s2
DS

􏽰

􏼠 􏼡

(32) 

where, P(EDP ≥ DS|IM) represents the probability of 

Figure 10. Average absolute change in fuzzy scores for different Intensity Measures (IMs) under Monte Carlo perturbations of the 
primary factor weights (at σln = 0.15): (a) Method 1; (b) Method 2.

Figure 11. Rank distribution of intensity measures (IMs) under Monte Carlo perturbations of the primary factor weights (at σln = 0.15): 
(a) Method 1; (b) Method 2. Colour intensity represents the frequency of each IM attaining a given rank position across 10,000 trials. 
Concentrated yellow bands denote stable ranks, while diffuse blue regions indicate higher variability in ranks.
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exceeding a given DS, Φ (⋅) is the standard normal 
cumulative distribution function (CDF), a and b are 
regression coefficients from the PSDM, sln EDP is the dis
persion of demand given IM, and sDS is the uncertainty 
in the damage state threshold (DSthreshold) (Cornell et al. 
2002; Jalayer and Allin Cornell 2009). The mean 
DSthreshold in log-space is:

mDS = ln (DSthreshold) (33) 

Equation (32) can be algebraically rearranged into 
the IM-domain as:

P(EDP ≥ DS|IM) = F
ln (IM) − mIM|DS

sIM

􏼒 􏼓

(34) 

where, μIM∣DS is the log-median intensity measure 
capacity associated with a given DS.

mIM|DS =
ln (DSthreshold) − ln a

b
(35) 

The total uncertainty in the fragility function is 
expressed by Equation (36).

sIM =

���������������
s2

ln EDP + s2
DS

􏽰

b
(36) 

where, σDS is the standard deviation reflecting epistemic 
uncertainty in the DS threshold. Equations (32) and (34) 
are mathematically equivalent; the latter form is 
implemented in this study. Similar IM-domain fragility 
formulations have been presented in prior research 
(Bakalis and Vamvatsikos 2018; Flenga and Favvata 
2021). The residual dispersion sEDP  is estimated from 
the regression model as:

sEDP =

������������������������������������������􏽐
(ln (EDPi) − (ln (a)+ b ln (IM))) 2

N − 2

􏽲

(37) 

where N is the number of ground motion records, ln 
(EDPi) is the log-transformed value of the EDP for the 
ith earthquake record. ln(a)+ b · ln (IM) is the pre
dicted log-transformed EDP value for the ith earthquake 
record, based on the regression model. The RS functions 
as the EDP and is calculated using Equation (3), while 
the IM is obtained from the input motion. As the 
EDP, the RS captures the vertical impacts of deviatoric 
sliding deformation, co-seismic volumetric changes, 
and potential post-liquefaction volumetric recompres
sion. It is assumed that the RS reflects the dam’s suscep
tibility to cracking (He and Rathje 2024).

6.1.1. Damage states
Damage states (DS) serve as key indicators for charac
terising the seismic response and extent of damage 

sustained by a structure and should be readily obser
vable or measurable during post-event inspections. In 
this study, DS are primarily defined using RS, calcu
lated from Equation (3). RS is the most widely 
adopted EDP in fragility assessments of earthen 
dams (He and Rathje 2024) because it is dimension
less, straightforward to measure in the field using 
standard survey techniques, and supported by case 
histories and empirical guidelines linking settlement 
magnitude to observed performance (Fell et al. 2005; 
Pells and Fell 2003; Swaisgood 2003). It was selected 
as the sole quantitative indicator of DS due to its con
sistency, reproducibility, and established application in 
analytical fragility studies (Kwak et al. 2016; Regina 
et al. 2023). Its primary advantage lies in directly 
reflecting permanent crest deformation, which is 
both observable in the field and replicable in numeri
cal simulations.

Although RS is the only metric employed here, it 
effectively represents a broader, multi-component 
damage framework: earth dam damage can also mani
fest through freeboard reduction, global instability, 
filter displacements, normalised crest settlement 
(NCS), or Fell damage classes (Regina et al. 2023; Swais
good 2003). Many of these indicators correlate strongly 
with crest settlement, and NCS is essentially a normal
ised form of RS empirically linked to post-earthquake 
dam performance. By relying on RS, the approach main
tains simplicity, reproducibility, and practical applica
bility, while remaining consistent with established 
empirical and analytical frameworks for fragility 
modelling.

For fragility modelling, DS are classified into five 
levels based on RS: DS1 (Minor: 0.03–0.2%), DS2 
(Moderate: 0.2–0.5%), DS3 (Major: 0.5–1.5%), DS4 
(Severe: 1.5–5%), and DS5 (Collapse: > 5%). These 
thresholds follow prior classifications (Swaisgood 
2003; Pells and Fell 2003) with a minor modification 
to omit a separate no/slight category (RS < 0.03%). 
Similar RS-based classification schemes have also 
been applied in recent studies (Khalid et al. 2023; 
Rathje and He 2022).

It is important to note that DS, as defined by RS, cor
relates with, but is not equivalent to, operational per
formance levels. Performance levels also consider 
factors such as functionality, repairability, and residual 
capacity (Fell et al. 2005; Regina et al. 2023). For 
decision-making, RS thresholds are mapped to perform
ance categories: DS1–lower DS2 to serviceable con
ditions; upper DS2–lower DS3 to life-safety or 
restricted operation; upper DS3– lower DS4 to tran
sition from life-safety to collapse-prevention conditions; 
and upper DS4–DS5 to collapse-prevention or breach 
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risk. This mapping ensures that RS-based DS definitions 
convey both the physical extent of deformation and the 
broader implications for dam safety, functionality, and 
residual capacity (Fell et al. 2005; Pells and Fell 2003; 
Regina et al. 2023; Swaisgood 2003).

6.2. Fragility curves

Fragility curves for embankment dams were developed 
for the optimal IMs using PSDMs from M1 and M2. In 
M2, scaling ground motion records is crucial for evalu
ating seismic vulnerability at different ground motion 
intensities. This process adjusts the IM of the original 
record to simulate various seismic loading levels. The 
resulting fragility curves show the probability of 

exceeding specific DS based on seismic IM, offering 
insights into damage likelihood under varying earth
quake IMs. Figure 14(a,b) illustrates the seismic fragi
lity curves for the top two IMs derived from M1, 
while Figure 14(c,d) presents the corresponding curves 
for the top two IMs from M2. These curves facilitate a 
comparison of the failure probabilities associated with 
each IM. Notably, for the minor damage state (DS =  
0.03%), VRMS displays a steeper slope, indicating 
that even a slight increase in this IM results in a con
siderably higher probability of exceedance compared 
to the other two IMs in M1. Additionally, at very low 
values (e.g. 0.5) of PGV and SMV, the probability of 
exceedance has surpassed at least DS1, DS2, DS3, and 
DS4 in M2.

Figure 12. Median rank positions with 5th – 95th percentile intervals for Intensity Measures (IMs) under Monte Carlo perturbations of 
the primary factor weights (σln = 0.15): (a) Method 1; (b) Method 2.

Figure 13. Variation of mean absolute rank change and mean Spearman correlation with increasing perturbation range (±10–50%) of 
primary factor weights: (a) Method 1; (b) Method 2.
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6.2.1. Comparison of fragility outcomes using 
conventional and optimal intensity measures
To examine the influence of IM selection on seismic fra
gility estimation, a comparative analysis was conducted 
between the conventional IM (PGA) and the velocity- 
based optimal IMs, VRMS (from M1) and PGV (from 
M2). The Figure 15(a–j) illustrate the fragility curves, 
evaluating the differences in the probability of exceeding 
each damage state (DS1–DS5). In each case, the PGA- 
based curve is presented for reference, allowing visual 
comparison with the curves obtained for the optimal 
IMs. The results demonstrate that PGA systematically 
underestimates the probability of exceeding all DS rela
tive to the velocity-based IMs. For VRMS (Figure 15(a,c, 
e,g,i)), the maximum underestimation by PGA reaches 
41% for DS1, 33% for DS2, 28% for DS3, 21% for 
DS4, and 4% for DS5. For PGV (Figure 15(b,d,f,h,i,j)), 
the corresponding maximum underestimation is 21% 
for DS1, 19% for DS2, 15% for DS3, 11% for DS4, and 
7% for DS5. These differences quantify the extent to 
which exclusive use of PGA can underestimate seismic 
risk. The disparity between PGA and velocity-based 
IMs fragility curves is most evident for the lower 
damage states (DS1–DS3). At higher damage states 
(DS4–DS5), the curves converge as deformation 
approaches ultimate capacity, although underestimation 
by PGA remains apparent. The largest discrepancies 
were observed at 41% for VRMS (M1, DS1) and 21% 
for PGV (M2, DS1).

Across both PSDM frameworks, the velocity-based 
IMs consistently outperform PGA in predicting damage 

probability. In the empirical PSDM (M1), VRMS, which 
incorporates both amplitude and duration effects, pro
vides a more reliable measure of cumulative damage 
potential. In the numerical PSDM (M2), PGV, which 
represents peak ground velocity and correlates with 
deformation demands, yields higher exceedance prob
abilities. These results demonstrate that velocity-based 
IMs better capture the dominant physical mechanisms 
governing the seismic response of embankment dams. 
As shown in the earlier evaluation metrics (Tables 5
and 6), VRMS and PGV exhibit higher correlation 
coefficients (r, R²) and lower conditional dispersion 
(σEDP|IM), while PGA is not even in the top 5 IMs. 
These quantitative metrics support the observed fragi
lity outcomes and confirm that PGA-based fragility 
models underestimate seismic vulnerability. Overall, 
the results highlight the importance of selecting optimal 
IMs, such as VRMS or PGV, that accurately represent 
the structural response characteristics and site-specific 
ground-motion conditions.

6.2.2. Comparison of optimal IMs across PSDM 
methods
The optimal IMs VRMS for the empirical PSDM (M1) 
and PGV for the numerical PSDM (M2) are velocity- 
based IMs; however, their predictive behaviour can 
vary due to differences in physical meaning, IM-EDP 
dataset characteristics, and modelling approach. PGV, 
representing the peak instantaneous ground velocity, 
correlates strongly with peak and permanent defor
mation demands (Khalid et al. 2023; Rathje and He 

Figure 14. Seismic fragility curves for the top two intensity measures (IMs). Panels (a) and (b) present the fragility functions obtained 
from Method 1 for VRMS and PGV, respectively, while panels (c) and (d) correspond to Method 2 for PGV and SMV, respectively.
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2022). In contrast, VRMS captures the cumulative vel
ocity energy of ground motion and is therefore more 
responsive to duration-dependent, energy-related 
demands (Bray and Travasarou 2007; Luco and Allin 
Cornell 2007; Rathje and Antonakos 2011).

In M1, which is based on seismic records from instru
mented embankment dams of different heights 

predominantly subjected to interplate ground motions, 
the heterogeneous dataset of EDP and IM from different 
embankment types reflects prolonged shaking and 
variability in embankment dam types. Under such con
ditions, where cumulative energy governs deformation, 
VRMS provides a more representative measure of struc
tural response. Conversely, the numerical PSDM (M2) 

Figure 15. Comparison of fragility curves developed using the conventional intensity measure (PGA) and the optimal IMs (VRMS from 
Method 1 (M1) and PGV from Method 2 (M2)). Panels (a), (c), (e), (g), (i) correspond to M1 (VRMS), while panels (b), (d), (f), (h), (j) 
correspond to M2 (PGV) for DS1–DS5, respectively. Blue lines represent the PGAs, and orange lines represent the optimal IMs. Anno
tated values indicate percentage-point differences in exceedance probability between IMs at each damage state, quantifying the 
underestimation associated with PGA.
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employs a homogeneous embankment dam FEM model 
and a comprehensive suite of scaled ground motions 
encompassing both interplate and intraplate events. 
The resulting deformations are primarily controlled by 
peak response amplitudes, for which PGV exhibits a 
stronger correlation with crest displacement.

The definition of the EDP further supports this 
difference. In M1, crest settlement is defined as the accu
mulated vertical displacement at instrumented points 
along the crest, emphasising cumulative response. In 
M2, it is defined as the average crest displacement 
along the dam crest, emphasising peak deformation. 
These differences in EDP definition, combined with 
the nature of the ground-motion datasets, can account 
for the selection of distinct optimal IMs. Accordingly, 
the optimal IMs identified in this study reflect the con
trasting characteristics of the two PSDM frameworks: 
VRMS is better suited for different types of instrumen
ted embankment dams having different heights, 
whereas PGV is more appropriate for homogeneous 
dam configurations. Recognising these distinctions 
ensures that the derived fragility relationships remain 
physically consistent and representative of embank
ment-dam seismic performance.

7. Practical implications for seismic design 
and safety assessment of dams

The results of this study emphasise the need for optimal 
IMs and dam-specific fragility functions to realistically 
capture seismic demand, especially for deformation- 
dominated failure modes. Conditioning fragilities, 
monitoring thresholds, and design spectra based on 
PGV and VRMS provide a more representative measure 
of seismic energy input, consistent with site- and per
formance-specific guidelines (FEMA 2005; ICOLD 
2010).

7.1. Implication for seismic design

Traditional design approaches often rely on PGA or Sa 
based design spectra; however, this study found that 
PGA-based fragility curves underestimate the damage 
probability compared to optimal IMs. So, integrating 
PGV and VRMS into design spectra can ensure that 
deformation and associated risk are properly rep
resented. Ground-motion selection and scaling can be 
adjusted to preserve PGV and VRMS targets, in 
addition to PGA. Numerical and empirical models can 

Figure 15. Continued. 
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be calibrated using instrumented embankment dam 
records (Pells and Fell 2003; USACE 2007; USSD 2022).

7.2. Implication for the safety assessment of 
existing dams

PGV and VRMS-based fragility curves enable the set
ting of alarm thresholds, the interpretation of instru
mentation data, and the guidance of post-earthquake 
assessments. Real-time computation of PGV and 
VRMS from strong-motion and pore-pressure sensors 
supports rapid post-earthquake assessment and risk- 
informed operational decisions (USACE 1995). 
Additionally, velocity-based fragility functions can 
inform retrofitting strategies aimed at reducing defor
mation vulnerability. Measures such as slope flattening, 
downstream buttressing, and reinforcement can be 
prioritised based on PGV and VRMS-based fragility 
curves (Aljawhari, Gentile, and Galasso 2022).

7.3. Integration into probabilistic seismic risk 
assessment

In probabilistic seismic risk assessment, the annual 
probability of exceeding a DS, denoted ϑds, can be 
obtained by combining the IM hazard with the IM-con
ditional fragility:

qds =
�1

0
P(DS ≥ ds|IM = x)dlIM(x) (38) 

where λIM (x) is the annual frequency of exceeding IM 
level x. Here, ϑds represents the yearly probability that 
an embankment dam will experience at least the 
specified DS. Using PGV and VRMS-based fragilities 
reduces uncertainty for deformation-driven failure 
modes and provides more credible annual exceedance 
estimates, supporting performance-based dam safety 
decisions and the prioritisation of inspections, monitor
ing, and retrofits (FEMA 2005; ICOLD 2010).

8. Conclusions

The increasing focus on performance-based assess
ments of multifunctional structures, such as embank
ment dams, underscores the urgent need to ensure 
their safety during seismic events. Given their critical 
roles in water storage and electricity generation, it is 
essential to enhance methodologies used to evaluate 
seismic performance. This study examined 14 IMs 
that influence the seismic vulnerability of embankment 
dams, classifying them into three categories: three based 
on frequency, two based on energy, and nine based on 
amplitude. PSDMs were developed using two distinct 

approaches: one based on empirical data from historical 
earthquake records of instrumented embankment dams, 
and another using numerical simulations with finite 
element method models subjected to ground motion 
records from both free-field and dam site stations. A 
quantitative framework was proposed to identify the 
optimal IMs for fragility curve development, assessing 
the optimality of 14 IMs across three criteria: efficiency, 
practicality, and proficiency. The fuzzy comprehensive 
evaluation method was subsequently applied to deter
mine the optimal IMs for both empirical and numerical 
simulation-based PSDMs. Dam damage was classified 
into five states using relative crest settlement ratio as 
the engineering demand parameter. The seismic fragi
lity curves were developed using PSDMs from both 
empirical and numerical data. The key findings of this 
study are summarised as follows: 

. Velocity-based IMs were superior for characterising 
seismic vulnerability. VRMS was identified as the 
optimal IM for empirical PSDMs (M1), while PGV 
was optimal for numerical PSDMs (M2), achieving 
the highest fuzzy evaluation scores. The commonly 
used IM, PGA, did not satisfy the optimality criteria, 
while EDA and AI (empirical PSDMs) and EDA and 
DRMS (numerical PSDMs) were identified as the 
least effective IMs.

. PGA systematically underestimates the probability of 
exceeding each defined DS relative to optimal IMs 
(VRMS and PGV). For VRMS, the maximum under
estimation by PGA reaches 41% for DS1, 33% for 
DS2, 28% for DS3, 21% for DS4, and 4% for DS5. 
Similarly, for PGV, the maximum underestimation 
by PGA reaches 21% for DS1, 19% for DS2, 15% 
for DS3, 11% for DS4, and 7% for DS5. These results 
indicate that reliance on PGA alone can produce 
non-conservative predictions of seismic damage.

. Empirical PSDMs captured the variability in seismic 
responses across multiple instrumented embankment 
dams of different heights, emphasising duration-sen
sitive measures like VRMS, whereas numerical 
PSDMs provided consistent predictions for a homo
geneous dam, with PGV preferred for representing 
peak instantaneous velocity; differences in engineer
ing demand parameters (accumulated vertical displa
cement for empirical PSDM versus average crest 
displacement for numerical PSDM) further support 
selecting VRMS for instrumented embankment 
dam types of different heights and PGV for homo
geneous embankment dam.

. Monte Carlo sensitivity analysis (10,000 trials) results 
indicate that VRMS and PGV showed minimal 
changes in fuzzy scores (0.005–0.007), narrow 
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percentile intervals, and high Spearman correlation 
coefficients (>0.85) under ±10–50% perturbations 
of primary criteria weight, indicating robustness 
against moderate uncertainty.

. Based on these findings, VRMS is recommended as 
optimal IM for instrumented embankment dams of 
different types and heights, and PGV for homo
geneous embankment dams. Velocity-based IMs pro
vide the most reliable representation of seismic 
demand, supporting performance-based design, 
risk-informed safety assessment, and prioritisation 
of monitoring and retrofitting interventions.

Overall, these findings offer valuable insights into the 
seismic vulnerability of embankment dams and under
score the need for ongoing enhancements to assessment 
frameworks to better safeguard these critical structures 
against potential earthquake impacts. The results of 
the numerical simulation-based PSDMs (M2) specifi
cally pertain to homogeneous embankment dams with 
defined geometrical and geotechnical characteristics; 
different outcomes may occur for other dam types 
with varying geometries and mechanical properties.
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Appendix A

Intensity measure (IM) description and properties

Ground motion parameters encompass at least one of the 
three fundamental characteristics of an earthquake: ampli
tude, frequency content, and duration (Kramer and Stewart 
2024). The 14 different Intensity Measures (IMs) analyzed 
in this study are outlined below. The parameters Peak Ground 
Acceleration (PGA), Peak Ground Velocity (PGV), and Peak 
Ground Displacement (PGD) reflect the maximum ampli
tudes of acceleration, velocity, and displacement recorded 
(Kramer and Stewart 2024): 

(1) Peak ground acceleration (PGA) is the maximum ground 
acceleration recorded during an earthquake and is given by:

PGA = max |a(t)|

(2) Peak ground velocity (PGV) is the maximum ground vel
ocity (first integration of acceleration) and is given by:

PGV = max |v(t)|

(3) Peak ground displacement (PGD) is the maximum 
ground displacement (double integration of acceleration) 
and is given by:

PGD = max |d(t)|

(4) Sustained Maximum acceleration (SMA):

Nuttli (1979) introduced this parameter, representing the 
sustained maximum acceleration recorded over three cycles. 
It is defined as the third highest absolute value of acceleration 
within the time history, where a value must exceed those 
recorded 20 steps before and 20 steps after to be considered 
a “maximum.”

SMA = the 3rd highest |a(t)|

(5) Sustained Maximum Velocity (SMV):

Nuttli (1979) introduced this parameter, which represents 
the sustained maximum velocity achieved during three cycles. 
It is defined as the third-highest absolute value of velocity in 
the time history. It is important to note that for an absolute 
value to be classified as a “maximum”, it must surpass the 
values recorded 20 steps before and 20 steps after it.

SMV = the 3rd highest |v(t)|

(6) The ratio of PGV and PGA is given by:

PGV
PGA

=
max |v(t)|
max |a(t)|

(7) Mean period (MP) is defined as:

MP =

􏽐
i C2

i
1
fi

􏼒 􏼓

􏽐
i C2

i
for 0.25 Hz ≤ fi ≤ 20Hz 

where Ci = Fourier amplitudes of the entire accelerogram; f i =  
discrete Fourier transform frequencies between 0.25 and 
20 Hz (Rathje, Abrahamson, and Bray 1998). 

(8) The predominant period (PP) is defined as the period of 
vibration corresponding to the maximum value of the 
smoothed Fourier amplitude spectrum calculated at 5% 
damping (Kramer and Stewart 2024).

(9) The root mean square acceleration (ARMS) is the effec
tive (RMS) acceleration over the significant duration 
and is defined as:

ARMS =

����������������

1
ttotal

􏽚ttotal

0

a(t)2dt

􏽶
􏽵
􏽵
􏽴

(10) The root mean square velocity (VRMS) is the RMS of 
velocity over the record and is defined as:

VRMS =

����������������

1
ttotal

􏽚ttotal

0

v(t)2dt

􏽶
􏽵
􏽵
􏽴

(11) The root mean square displacement (DRMS) is the RMS 
of displacement over the record and is defined as:

DRMS =

����������������

1
ttotal

􏽚ttotal

0

d(t)2dt

􏽶
􏽵
􏽵
􏽴

(12) The Arias Intensity (AI) is computed as:

AI =
p

2g

􏽚ttotal

0

[a(t)]2dt 

(13) The Cumulative Absolute Velocity CAV is computed as:

CAV =
􏽚ttotal

0

[a(t)]dt 

(14) Effective Design Acceleration (EDA):

This parameter corresponds to the peak acceleration value 
identified after low-pass filtering of the input time history with 
a cut-off frequency of 9 Hz (Benjamin 1988).

30 S. PRAKASH AND P. ANBAZHAGAN

https://doi.org/10.1080/17499518.2023.2164901
https://doi.org/10.1080/17499518.2023.2164901

	Abstract
	1. Introduction
	2. Ground motion intensity measures
	3. IM-EDP relationship
	3.1. Method 1: empirical analysis (using earthquake records from instrumented dams)
	3.2. Method 2: numerical simulations (FEM modelling of dam)
	3.2.1. Validation of the numerical model


	4. Evaluation parameters
	4.1. Efficiency
	4.1.1. Correlation coefficients
	4.1.2. Goodness of fit
	4.1.3. Root Mean Square Error (RMSE)
	4.1.4. Standard deviation of residuals (dispersion)

	4.2. Practicality
	4.3. Proficiency

	5. Proposed fuzzy evaluation framework for ranking intensity measures
	5.1. Aggregation of secondary factors into primary factors
	5.2. Final fuzzy scores and optimal IM selection
	5.3. Sensitivity analysis of primary factor weights

	6. Seismic fragility analysis
	6.1. Fragility function
	6.1.1. Damage states

	6.2. Fragility curves
	6.2.1. Comparison of fragility outcomes using conventional and optimal intensity measures
	6.2.2. Comparison of optimal IMs across PSDM methods


	7. Practical implications for seismic design and safety assessment of dams
	7.1. Implication for seismic design
	7.2. Implication for the safety assessment of existing dams
	7.3. Integration into probabilistic seismic risk assessment

	8. Conclusions
	Acknowledgements
	Disclosure statement
	Data availability
	References
	Appendix A
	Intensity measure (IM) description and properties


